The Chinese Mars rover Zhurong successfully landed in southern Utopia Planitia on Mars in May 2021. Previous research suggested a Hesperian ocean may have existed in the northern lowland on Mars. Recent research observed water-related features at the Zhurong landing site from in situ data.
View Article and Find Full Text PDFStat Methods Med Res
September 2024
It is not uncommon for a substantial proportion of patients to be cured (or survive long-term) in clinical trials with time-to-event endpoints, such as the endometrial cancer trial. When designing a clinical trial, a mixture cure model should be used to fully consider the cure fraction. Previously, mixture cure model sample size calculations were based on the proportional hazards assumption of latency distribution between groups, and the log-rank test was used for deriving sample size formulas.
View Article and Find Full Text PDFBackground: Patients with early-stage breast cancer may have a higher risk of dying from other diseases, making a competing risks model more appropriate. Considering subdistribution hazard ratio, which is used often, limited to model assumptions and clinical interpretation, we aimed to quantify the effects of prognostic factors by an absolute indicator, the difference in restricted mean time lost (RMTL), which is more intuitive. Additionally, prognostic factors of breast cancer may have dynamic effects (time-varying effects) in long-term follow-up.
View Article and Find Full Text PDFIntroduction: The psychological well-being of adolescents is a global concern due to increasing societal pressures and mental health issues. Physical activity is known to enhance physical health and has potential benefits for mental health, including reducing symptoms of anxiety and depression, boosting self-esteem, and improving social skills. This narrative review explores how physical activity can serve as an intervention to help adolescents manage psychological stress and prevent mental health issues.
View Article and Find Full Text PDFCo-free Li-rich Mn-based cathode materials (Co-free LRMOs) have become one of the most promising cathode materials in lithium-ion batteries for the next generation due to their low cost, high capacity, and environmental friendliness. Under high voltage, redox reactions involving anions can easily lead to various issues, including oxygen release, dissolution of transition metal elements (TMs), and structural collapse in these materials. The absence of the Co element further exacerbates this issue.
View Article and Find Full Text PDFThe realization of sodium-ion devices with high-power density and long-cycle capability is challenging due to the difficulties of carrier diffusion and electrode fragmentation in transition metal selenide anodes. Herein, a Mo/W-based metal-organic framework is constructed by a one-step method through rational selection, after which MoWSe/C heterostructures with large angles are synthesized by a facile selenization/carbonization strategy. Through physical characterization and theoretical calculations, the synthesized MoWSe/C electrode delivers obvious structural advantages and excellent electrochemical performance in an ethylene glycol dimethyl ether electrolyte.
View Article and Find Full Text PDFMetal sulfides are promising anode materials for sodium-ion batteries (SIBs) due to their structural diversity and high theoretical capacity, but the severe capacity decay and inferior rate capability caused by poor structural stability and sluggish kinetics impede their practical applications. Herein, a cobalt-doped amorphous VS wrapped by reduced graphene oxide (i.e.
View Article and Find Full Text PDFCoupling sites of nitrogen-dopants and intrinsic carbon defects (N/DC) are highly attractive to improve potassium-storage capacity and cycling stability, yet it is hard to effectively construct them. Herein, a novel strategy is proposed to establish abundant N/DC sites in N-doped carbon (ZIF8/NaBr-1-900) by pyrolyzing the mixture of metal-organic framework (ZIF8)/sodium bromide (NaBr). Systematic investigations disclose that the introduced NaBr can promote the full conversion of Zn-N moieties into zinc oxide (ZnO) via a "bait and switch" mechanism.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) with special morphologies provide the geometric morphology and composition basis for the construction of platforms with excellent catalytic activity. In this work, cobalt-cerium composite oxide hollow dodecahedrons (Co/Cex-COHDs) with controllable morphology and tunable composition are successfully prepared via a high-temperature pyrolysis strategy using Co/Ce-MOFs as self-sacrificial templates. The construction of the hollow structure can expose a larger surface area to provide abundant active sites and pores to facilitate the diffusion of substances.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2023
In the field of clinical chronic diseases, common prediction results (such as survival rate) and effect size hazard ratio (HR) are relative indicators, resulting in more abstract information. However, clinicians and patients are more interested in simple and intuitive concepts of (survival) time, such as how long a patient may live or how much longer a patient in a treatment group will live. In addition, due to the long follow-up time, resulting in generation of longitudinal time-dependent covariate information, patients are interested in how long they will survive at each follow-up visit.
View Article and Find Full Text PDFAims: To systematically evaluate the diagnostic value of an artificial intelligence (AI) algorithm model for various types of diabetic retinopathy (DR) in prospective studies over the previous five years, and to explore the factors affecting its diagnostic effectiveness.
Materials And Methods: A search was conducted in Cochrane Library, Embase, Web of Science, PubMed, and IEEE databases to collect prospective studies on AI models for the diagnosis of DR from January 2017 to December 2022. We used QUADAS-2 to evaluate the risk of bias in the included studies.
Intratumoral hypoxia is widely associated with the development of malignancy, treatment resistance, and worse prognoses. The global influence of hypoxia-related genes (HRGs) on prognostic significance, tumor microenvironment characteristics, and therapeutic response is unclear in patients with non-small cell lung cancer (NSCLC). RNA-seq and clinical data for NSCLC patients were derived from The Cancer Genome Atlas (TCGA) database, and a group of HRGs was obtained from the MSigDB.
View Article and Find Full Text PDFObjectives: Developing a preclinical training infrastructure for cardiovascular clinician-scientists is an academic workforce priority. The Cardiovascular Research Institute of Vermont developed a cardiovascular summer research fellowship (SRF), wherein medical student awardees were selected by merit-based application and completed mentored research between the first and second years. We aimed to study the impact of the SRF on medical student scholarship and career planning.
View Article and Find Full Text PDFMultipores engineering composed of micro/mesopores is an effective strategy to improve potassium storage performance via providing enormous adsorption sites and shortened ions diffusion distance. However, a detailed exploration of the role played by macropores in potassium storage is still lacking and has been barely reported until now. Herein, a superstructure carbon hexahedron (DGN-900) is synthesized using poly tannic acid (PTA) as precursor.
View Article and Find Full Text PDFPotassium-ion batteries (PIBs) exhibit a considerable application prospect for energy storage systems due to their low cost, high operating voltage, and superior ionic conductivity. As a vital configuration in PIBs, the two-phase interface, which refers to K-ion diffusion from the electrolyte to the electrode surface (solid-liquid interface) and K-ion migration between different particles (solid-solid interface), deeply determines the diffusion/reaction kinetics and structural stability, thus significantly affecting the rate performance and cyclability. However, researches on two-phase interface are still in its infancy and need further attentions.
View Article and Find Full Text PDFIt is a considerable challenge to produce a supercapacitor with inexpensive raw materials and employ a simple process to obtain carbon materials with a high specific surface area, rich pore structure, and appropriate doping of heterogeneous elements. In the current study, yam waste-derived porous carbon was synthesized for the first time by a two-step carbonization and KOH chemical activation process. An ultra-high specific surface area of 2382 m g with a pore volume of 1.
View Article and Find Full Text PDFPurpose: Retinopathy of prematurity (ROP) is a common retinal vascular disease in premature neonates. In recent years, there is increasing evidence that the long non-coding RNA taurine upregulated gene 1 () plays a regulatory role in vascular diseases, suggesting a potential role for in vascular endothelial cells. We hypothesized that may be associated with ROP.
View Article and Find Full Text PDFPore-structure design with increased ion-diffusion ability is usually regarded as an effective strategy to improve K-storage performance in hard carbon (HC). However, the relationship between porous structure and K migration behavior remains unclear and requires further exploration. Herein, a series of chemically activated hard carbon spheres (denoted as AHCSs) with controllable micro/mesopores structure are successfully synthesized to explore intercorrelation between micro/mesopores and K migration behavior.
View Article and Find Full Text PDFDue to their high energy/power densities and ultralong cycle lifespan, potassium-ion hybrid capacitors (PIHCs) have attracted increasing research interest for large-scale energy storage systems. However, the kinetics mismatch between the battery-type anodes and capacitor-type cathodes severely hampers the further development of PIHCs. Herein, the kinetics-enhanced N-doped amorphous porous carbon with an interconnected three-dimensional (3D) network (marked as NPC) is reported.
View Article and Find Full Text PDFHeteroatoms doping strategies are often considered to be an effective approach to provide rich active sites for capacitive-controlled potassium storage, and enlarged interspacing for intercalation process. However, the excess doping level will form a large number of sp defects and thus severely damage π-conjugated system, which is unfavorable for electron transfer. Herein, a P/N co-doped three-dimensional (3D) interconnected carbon nanocage (denoted as PN-CNC) is prepared with the help of a template-assisted method.
View Article and Find Full Text PDFThe sluggish Li-ion diffusivity in LiFePO , a famous cathode material, relies heavily on the employment of a broad spectrum of modifications to accelerate the slow kinetics, including size and orientation control, coating with electron-conducting layer, aliovalent ion doping, and defect control. These strategies are generally implemented by employing the hydrothermal/solvothermal synthesis, as reflected by the hundreds of publications on hydrothermal/solvothermal synthesis in recent years. However, LiFePO is far from the level of controllable preparation, due to the lack of the understanding of the relations between the synthesis condition and the nucleation-and-growth of LiFePO .
View Article and Find Full Text PDFLeptomeningeal anastomoses are small distal anastomotic vessels also known as pial collaterals in the brain. These vessels redirect blood flow during an occlusion and are important for stroke treatment and outcome. Pial collaterals have unique hemodynamic forces and experience significantly increased luminal flow and shear stress after the onset of ischemic stroke.
View Article and Find Full Text PDFBackground: Obtaining research funding support is integral to a successful career in science. Training and practice in grant writing, as well as engagement in peer review of grant applications may help lead to successful research funding. However, there is little evidence on the impact of institutional programs on the career development of early career investigators (ECIs).
View Article and Find Full Text PDFForming olivine-structured Li(Mn,Fe)PO solid solution is theoretically a feasible way to improve the energy density of the solid solutions for lithium ion batteries. However, the Jahn-Teller active Mn in the solid solution restricts their energy density and rate performance. Here, as demonstrated by operando X-ray diffraction, we show that equimolar LiMnFePO solid solution nanocrystals undergo a single-phase transition during the whole (de)lithiation process, with a feature of zero lithium miscibility gap, which endows the nanocrystals with excellent electrochemical properties.
View Article and Find Full Text PDF