Recently, the long less-known Form II red phosphorus (RP) (viz. Type II RP) was ascertained by the state-of-the-art 3-dimensional electron diffraction technique with a triclinic lattice, completely distinct from other known elemental phosphorus and leaving atomic coordinates not determined. The cell composed of ∼250 atoms might exceed the capacity of current readily available crystal structure search packages, which have been widely applied to systems with several tens of atoms.
View Article and Find Full Text PDFFibrous red phosphorus (RP) has triggered growing attention as an emerging quasi-one-dimensional (quasi-1D) van der Waals crystal recently. Unfortunately, it is difficult to achieve substrate growth of high-quality fibrous RP flakes due to their inherent quasi-1D structure, which impedes their fundamental property exploration and device integration. Herein, we demonstrate a bottom-up approach for the growth of fibrous RP flakes with (001)-preferred orientation via a chemical vapor transport (CVT) reaction in the P/Sn/I system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
The practical applications of fibrous red phosphorus (FRP), an emerging quasi-one-dimensional material, might be hindered by its environmental instability. Although other phosphorus allotropes such as white phosphorus, violet phosphorus, and black phosphorus are reported unstable under ambient conditions, the chemical stability of FRP remains unexplored. Herein, we investigate the degradation chemistry of FRP by combining experimental study and density functional theory calculations.
View Article and Find Full Text PDFDoping has been a reliable way to improve the properties of black phosphorus (BP). However, a uniform and large amount of doping in BP remains a challenge. Herein, the synthesis of tellurium-doped black phosphorus (Te-doped BP) single crystals with high crystalline quality is achieved by the chemical vapor transport reaction method.
View Article and Find Full Text PDF