Following the milestone success of the Human Genome Project, the 'Encyclopedia of DNA Elements (ENCODE)' initiative was launched in 2003 to unearth information about the numerous functional elements within the genome. This endeavor coincided with the emergence of numerous novel technologies, accompanied by the provision of vast amounts of whole-genome sequences, high-throughput data such as ChIP-Seq and RNA-Seq. Extracting biologically meaningful information from this massive dataset has become a critical aspect of many recent studies, particularly in annotating and predicting the functions of unknown genes.
View Article and Find Full Text PDFGiven the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular, cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance.
View Article and Find Full Text PDFMagnetic susceptibility measurements on conducting polyaniline and polypyrrole nanostructures with different dopant type and doping level as functions of temperature and magnetic field are reported. The susceptibility data cannot be simply described as Curie-like susceptibility at lower temperatures and temperature-independent Pauli-like susceptibility at higher temperatures; some unusual transitions are observed in the temperature dependence of susceptibility, for example, paramagnetic susceptibility decreases gradually with lowering temperature, which suggests the coexistence of polarons and spinless bipolarons and possible formation of bipolarons with changing temperature or doping level. In particular, it is found that the direct current magnetic susceptibilities are strongly dependent on applied magnetic field, dopant type, and doping level.
View Article and Find Full Text PDFPolypyrrole nanowires have been electrosynthesized by direct oxidation of 0.1 mol l(-1) pyrrole in a medium of 75% isopropyl alcohol + 20% boron trifluoride diethyl etherate + 5% poly (ethylene glycol) (by volume) using porous alumina membranes as the templates. The as-prepared nanowires had a smooth surface and uniform diameter and were arranged in an orderly manner in a high density.
View Article and Find Full Text PDFCore-shell micro/nanostructured and electromagnetic functionalized polypyrrole (PPy) composites were prepared by a self-assembly process associated with the template method in the presence of p-toluenesulfonate acid (p-TSA) as the dopant, in which the spherical hydroxyl iron (Fe[OH], 0.5-5 microm in diameter) functioned not only as the hard template, but also as the "core" of the micro/nanostructure, and the self-assembled PPy-p-TSA nanofibers (20-30 nm in diameter) acted as the "shell" (50-100 nm in thickness) of the microspheres. We found that the core-shell micro/nanostructures exhibit controllable electromagnetic properties by adjusting the mass ratio of Fe[OH] to pyrrole monomer.
View Article and Find Full Text PDFOne-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 50-60 nm and lengths of more than 1 mum were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl(4)) through a self-assembly process in the presence of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl(4) and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables.
View Article and Find Full Text PDF