Autophagy in microglia is essential for the clearance of amyloid-beta (Aβ) and amyloid plaques in Alzheimer's disease. However, reports regarding the levels of autophagy in microglia have been inconsistent; some studies indicate an early enhancement followed by a subsequent reduction, while others describe a persistently weakened state. Notably, there is a lack of systematic studies documenting the temporal changes in microglial autophagy.
View Article and Find Full Text PDFTwenty-four cows were used in a randomized complete block design. Cows were assigned to three groups: (1) Control, (2) 3-nitrooxypropanol (NOP) of 200 mg/kg feed dry matter (10% NOP), and (3) NOP × MAL (10% NOP at 200 mg/kg feed dry matter plus 99% -malate at 10 g/kg feed dry matter). Cows were fed for 10-wk.
View Article and Find Full Text PDFAlzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease.
View Article and Find Full Text PDFObjective: This study was conducted to investigate the effect of slaughter age on carcass traits, meat quality, and the relative mRNA levels of lipid metabolism-related genes in different muscles of Taihang black goats.
Methods: In this study, the triceps brachii (TB), longissimus dorsi (LD) and gluteus (GL) muscles of 15 grazing Taihang black goats slaughtered at the age of 2, 3, and 4 (designated as 2-year-old, 3-year-old, and 4-year-old, respectively) were collected. The differences in carcass shape, meat quality, amino acid composition and lipid metabolism gene expression among Taihang black goats of different ages and from different plant parts were compared.
The competitive behavior of proteins in the reversible adsorption stage plays a crucial role in determining the composition of the protein layer and the subsequent biological responses to the biomaterial. However, such competitive adsorption is a mesoscopic process at physiological protein concentration, and neither a macroscopic experiment nor microscopic MD (molecular dynamics) simulation is suitable to clarify it. Here, we proposed a mesoscopic DPD (dissipative particle dynamics) model to illustrate the competitive process of albumin and fibrinogen on TiO surface with its parameters deduced from our previous MD simulation, and proved the model well retained the diffusion and adsorption properties of proteins in the competitive adsorption on the plane surface.
View Article and Find Full Text PDFChronic Cerebral Hypoperfusion (CCH) is associated with cognitive dysfunction, the underlying mechanisms of which remain elusive, hindering the development of effective therapeutic approaches. In this study, we employed an established CCH animal model to delve into neuropathological alterations like oxidative stress, inflammation, neurotransmitter synthesis deficits, and other morphological alterations. Our findings revealed that while the number of neurons remained unchanged, there was a significant reduction in neuronal fibers post-CCH, as evidenced by microtubule-associated protein 2 (MAP2) staining.
View Article and Find Full Text PDFBackground: Both Alzheimer's disease (AD) and aging have aging-related cognitive dysfunction with a high incidence. These neurological diseases cause serious cognitive problems in patients' daily life. But the cognitive dysfunction mechanism in-depth of aging is far less known than that of AD.
View Article and Find Full Text PDFReal-time monitoring of flow turbulence is very difficult but extremely important in fluid dynamics, which plays an important role in flight safety and control. Turbulence can cause airflow to detach at the end of the wings, potentially resulting in the aerodynamic stall of aircraft and causing flight accidents. Here, we developed a lightweight and conformable system on the wing surface of aircraft for stall sensing.
View Article and Find Full Text PDFChronic cerebral hypoperfusion (CCH)-mediated cognitive impairment is a serious problem worldwide. However, given its complexity, the underlying mechanisms by which CCH induces cognitive dysfunction remain unclear, resulting in a lack of effective treatments. In this study, we aimed to determine whether changes in the expression of RasGRF1, an important protein associated with cognition and synaptic plasticity, underlie the associated impairments in cognition after CCH.
View Article and Find Full Text PDFEnergy harvesting technologies that convert fluid energy into usable electrical energy are of great significance, especially in long-distance pipeline systems. Here, in order to avoid the collision of conventional galloping triboelectric nanogenerators (GTENGs), and cause material damage or noise, a freestanding gallop-based triboelectric-piezoelectric hybrid nanogenerator (HG P-TENG) is proposed to reduce material wear and improve the reliability of GTENG. Two piezoelectric sheets are attached to the cantilever beam.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2022
Objective: We aimed to evaluate the future outcomes of patients undergoing their first IVF ( fertilization) attempt with no oocyte retrieved, no normal zygotes formed, or no embryos available for transfer and to identify factors affecting the live birth rate.
Methods: Patients who underwent no transplantable embryo in their first IVF cycles but carried out several consecutive cycles between January 2012 to December 2020 were retrospectively enrolled and divided into three groups:group A (no egg retrieval), group B (no normal zygotes formed), and group C (no embryos available to transfer). The patients were also divided into the live birth group and non-live birth group according to whether they got a live baby or not.
Front Aging Neurosci
October 2021
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. However, its cellular and molecular mechanisms still wrap in the mist. This is partially caused by the absence of appropriate animal models mimicking sporadic PD that constitutes the majority of cases.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2021
In serval experimental researches, UV-induced hydrophilicity enabled better hemocompatibility in the TiO surface, which was considered to be caused by the removal of the carboxylic acid contamination from the surface. In this paper, we altered the surface wetting property by applying the formate contamination on the rutile (110) surface, and systematically investigated the adsorption properties of albumin and fibrinogen on hydrophilic/hydrophobic TiO surface. Unique contacts were found between the charged residues and the hydrophilic surface, anchoring the protein on the surface.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common neurodegenerative diseases, which is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway. Synaptic dysfunction impairs dopamine turnover and contributes to the degeneration of dopaminergic neurons. However, the molecular mechanisms underlying synaptic dysfunction and dopaminergic neuronal vulnerability in PD are not clear.
View Article and Find Full Text PDFChronic cerebral hypoperfusion (CCH) may lead to the cognitive dysfunction, but the underlying mechanisms are unclear. EGB761, extracted from and as a phytomedicine widely used in the world, has been showed to have various neuroprotective roles and mechanisms, and therapeutic effects in Alzheimer's disease and other cognitive dysfunctions. However, improvements in cognitive function after CCH, following treatment with EGB761, have not been ascertained yet.
View Article and Find Full Text PDFCognitive dysfunction caused by chronic cerebral hypoperfusion is a common underlying cause of many cognition-related neurodegenerative diseases. The mechanisms of cognitive dysfunction caused by CCH are not clear. Long non-coding RNA is involved in synaptic plasticity and cognitive function, but whether lncRNA is involved in cognitive dysfunction caused by CCH has not yet been reported.
View Article and Find Full Text PDFRecent studies have demonstrated that the brain is equipped with a lymphatic drainage system that is actively involved in parenchymal waste clearance, brain homeostasis and immune regulation. However, the exact anatomic drainage routes of brain lymph fluid (BLF) remain elusive, hampering the physiological study and clinical application of this system. In this study, we systematically dissected the anatomy of the BLF pathways in a rat model.
View Article and Find Full Text PDFChronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction after CCH.
View Article and Find Full Text PDFChronic cerebral hypoperfusion (CCH) affects the aging population and especially patients with neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. CCH is closely related to the cognitive dysfunction in these diseases. Glucagon-like peptide-2 receptor (GLP2R) mRNA and protein are highly expressed in the gut and in hippocampal neurons.
View Article and Find Full Text PDFNeuroinflammation and oxidative stress play an important role in cognition deficit following chronic cerebral hypoperfusion (CCH). Luteolin, a natural flavonoid found in many plants, is known for a variety of pharmacological activities, such as its anti-inflammatory, anti-allergy, urate, anti-tumor, antibacterial, and antiviral effects. To assess whether luteolin could prevent CCH-induced cognitive dysfunction, through its anti-inflammatory and anti-oxidative-stress effects, we used enzyme-linked immunosorbent assays, enzyme activity assays, behavioral methods, immunohistochemistry, and electrophysiology to detect neuroinflammation and oxidative stress, cognition alterations, and long-term potential (LTP), in a bilateral common carotid arteries ligation (2VO) rat model.
View Article and Find Full Text PDFBackground: Chronic Cerebral Hypoperfusion (CCH) is an important vascular risk factor for vascular-related dementia cognitive impairment and there are no effective measures for the prevention and treatment of cognitive deficit by CCH and the underlying mechanisms are still poorly understood. Methyl cytidine-phosphate-guanosine (CpG) binding protein 2 (MeCP2), regulated by microRNA 132 (miR-132), is as a transcriptional repressor in high concentrations in the brain, which regulates the expression of synaptic proteins and neuroplasticity, and may be involved in the cognitive deficit after CCH. But no relevant studies have been reported.
View Article and Find Full Text PDFFlow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated.
View Article and Find Full Text PDFChronic cerebral hypoperfusion (CCH) induces cognitive deficits. Although CCH can be improved, cognitive impairment is not improved accordingly. To date, many studies have focused on investigating the pathophysiological mechanisms of CCH; however, the treatment of the induced cognitive impairment remains ineffective.
View Article and Find Full Text PDFElectroconvulsive therapy (ECT) was widely used to treat the refractory depression. But ECT led to the cognitive deficits plaguing the depression patients. The underlying mechanisms of the cognitive deficits remain elusive.
View Article and Find Full Text PDF