Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2024
Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
April 2024
Masked image modeling (MIM) with transformer backbones has recently been exploited as a powerful self-supervised pre-training technique. The existing MIM methods adopt the strategy to mask random patches of the image and reconstruct the missing pixels, which only considers semantic information at a lower level, and causes a long pre-training time. This paper presents HybridMIM, a novel hybrid self-supervised learning method based on masked image modeling for 3D medical image segmentation.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2023
Existing segmentation methods for brain MRI data usually leverage 3D CNNs on 3D volumes or employ 2D CNNs on 2D image slices. We discovered that while volume-based approaches well respect spatial relationships across slices, slice-based methods typically excel at capturing fine local features. Furthermore, there is a wealth of complementary information between their segmentation predictions.
View Article and Find Full Text PDF