Publications by authors named "Zhaoduan Liang"

Interface residues at sites of protein-protein interaction (PPI) are the focus for affinity optimisation. However, protein hydrophobic cores (HCs) play critical roles and shape the protein surface. We hypothesise that manipulating protein HCs can enhance PPI interaction affinities.

View Article and Find Full Text PDF

Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T.

View Article and Find Full Text PDF
Article Synopsis
  • CAR T cell therapy, used to fight cancer, sometimes doesn't work well and can cause harm to healthy tissues.
  • A new type of therapy called CFR64 is made to improve how these T cells attack cancer cells while minimizing side effects.
  • CFR64 T cells are better at fighting cancer long-term and show more stability and strength compared to traditional CAR T cells.
View Article and Find Full Text PDF

Currently, the optimal lymphodepletion intensity for peripheral blood mononuclear cell-derived neoantigen-specific CD8 + T cell (Neo-T) therapy has yet to be determined. We report a single-arm, open-label and non-randomized phase 1 study (NCT02959905) of Neo-T therapy with lymphodepletion at various dose intensity in patients with locally advanced or metastatic solid tumors that are refractory to standard therapies. The primary end point is safety and the secondary end points are disease control rate (DCR), progression-free survival (PFS), overall survival (OS).

View Article and Find Full Text PDF

Introduction: The presence of soluble human programmed cell death-ligand 1 (shPD-L1) in the blood of patients with cancer has been reported to be negatively correlated with disease prognosis. However, little information exists about the mechanisms underlying high levels of shPD-L1 for promoting disease progression.

Methods: In this study, we first analyzed the correlations between shPD-L1 and apoptosis of T cells in patients with cancer, then tested the effect of shPD-L1 on T-cell functions and the production of regulatory T cells.

View Article and Find Full Text PDF

Although the pre-clinical study of chimeric antigen receptor (CAR)-natural killer (NK) cell was effective against various tumours, immunosuppression mediated by tumour microenvironment hampers their application and several efforts have been explored to improve their effect in combating solid tumours. Glypican 3 (GPC3) is a promising target for hepatocellular carcinoma (HCC), and CAR-T cells targeting GPC3 have been tested in clinical trials. Based on an affinity-enhanced antibody (hYP7) targeting GPC3, we constructed GPC3-CAR-NK cells to explore their potential function in the treatment of HCC.

View Article and Find Full Text PDF

Background: In patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), virus-specific cytotoxic T lymphocytes (CTLs) fail to eliminate HCC cells expressing HBV antigens. As the expression of viral antigen in HBV-associated HCC may decrease to allow tumor to escape immune attacks, we hypothesized that an HBV surface antigen (HBsAg)-specific affinity-improved-T-cell receptor (TCR) will enable T cells to target HCC more effectively than corresponding wild-type-TCR. We also postulated that TCR promiscuity can be exploited to efficiently capture HBV variants that can hinder CTL-based therapeutics.

View Article and Find Full Text PDF

Tumor cells can escape immune surveillance through the programmed cell death protein 1 (PD-1) axis suppressing T cells. However, we recently demonstrated that high-affinity variants of soluble human programmed death-ligand 1 (shPD-L1) could diminish the suppression. We propose that in comparison to the wild-type shPD-L1, the further affinity enhancement will confer the molecule with opposite characteristics that augment T-cell activation and immunotherapeutic drug potential.

View Article and Find Full Text PDF

The inhibitory checkpoint molecule programmed death (PD)-1 plays a vital role in maintaining immune homeostasis upon binding to its ligands, PD-L1 and PD-L2. Several recent studies have demonstrated that soluble PD-1 (sPD-1) can block the interaction between membrane PD-1 and PD-L1 to enhance the antitumor capability of T cells. However, the affinity of natural sPD-1 binding to PD-L1 is too low to permit therapeutic applications.

View Article and Find Full Text PDF

Recently, bi-functional molecules that can redirect immune effectors to tumour cells have emerged as potentially robust mediators of tumour regression in clinical trials. Two modalities in particular, bi-specific antibodies for T-cell redirection and activation (BiTe) and immune-mobilizing monoclonal T-cell receptors against cancer (ImmTAC), are being evaluated in efficacy studies as 'off-the-shelf' reagents. Optimal therapy will require an understanding and means to address regulatory mechanisms of limiting efficacy.

View Article and Find Full Text PDF

The activated T cells can be suppressed by programed death-1 (PD-1) axis through low affinity interaction between PD-1 and PD-ligand 1 (PD-L1) in solution or on antigen presenting cells. In clinic, the concentration of soluble PD-L1 in peripheral blood negatively correlates with cancer prognosis. However, there is little information about the relation between the affinity of PD-1/PD-L1 interaction and the suppressive capacity of PD-1 axis.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) readily establishes chronic infection, which is characterized by failure of virus-specific CD8+ T cells. HCV uses epitope mutation and T-cell exhaustion to escape from the host immune response. Previously, we engineered high-affinity T-cell receptors (HATs) targeting human immunodeficiency virus escape mutants.

View Article and Find Full Text PDF

Our study presents a first investigation of the effect of the adjuvant PIKA on dengue virus (DENV) replication. PIKA pretreatment decreased the levels of DENV serotype 2 (DENV2) mRNA, protein and viral particles in the hepatoma cell line HepG2. Treatment with PIKA simultaneously with DENV2 infection, but not after infection, resulted in a protective effect.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands.

View Article and Find Full Text PDF

Aim: To study the effect of Apigenin (AP) on the proliferation, cell cycle and apoptosis of mouse T cells in vitro.

Methods: The lymphocytes were prepared from lymph nodes and thymus of mice. The effect of AP on the proliferation of T in response to ConA at different concentrations (25, 50, 100, 150, 200 micromol/L) was detected by MTT.

View Article and Find Full Text PDF