Publications by authors named "Zhaocai Teng"

Biomass-derived porous carbon (PC) has emerged as a promising candidate for electrode materials in energy storage applications, effective pretreatment of the precursor is a key strategy for enhancing the electrochemical performance of PC. However, challenges remain in achieving this goal through environmentally friendly, simple, and efficient methods. In this paper, a dual-frequency ultrasonic-assisted enzymolysis strategy combined with carbonization-activation method was proposed to prepare high-performance garlic peel-derived PC (DUGPC) for supercapacitors.

View Article and Find Full Text PDF

Biomass-derived porous carbon (PC) has been widely studied in the field of supercapacitors due to its low cost, sustainability and developed pore structure, but how to screen the precursors of high-performance PC is still a major difficulty. Herein, six lignocellulosic biomass models based on different compositions were innovatively constructed and prepared into high-performance PC by a synergistic activation-doping strategy. The results show that the synergistic activation-doping strategy has a certain universality for biomass models.

View Article and Find Full Text PDF

Here, sodium alginate and calcium alginate which have the same carbon-forming component (alginic acid) and different regulation component (sodium/calcium) were used to prepare porous carbons, and comparisons were made of the microstructures and electrochemical properties of the obtained charcoals. The morphology was characterized by Scanning electron microscopy (SEM), and the results show that porous carbons can inherit plane or concave structures from their corresponding carbonized samples. The Horvath-Kawazoe (HK) method was used to analyze micropore size distributions, and the results show that, under the same mass ratio of potassium hydroxide to carbonized sample (KOH/C), the positions of extreme points on the two curves are similar, but the extreme values are different, and new extreme points appear at larger pore sizes with increases in the KOH/C ratio.

View Article and Find Full Text PDF

It is generally acknowledged that the activation method and component of the precursor are of great importance for making porous carbon. In this study, four plant materials belong to one genus were selected as optimized plant material to produce hierarchical porous carbon for supercapacitors, the influence of initial structure was discussed. All the produced porous carbons have large specific surface area (higher than 2342 m g), high microporosity (more than 57%), and high pore volume (larger than 1.

View Article and Find Full Text PDF

Ultrasonic-assisted impregnation is used to synthesize physically modified garlic peel-based 3D hierarchical porous carbons (PCs), and the effect on PCs is investigated by changing ultrasonic time. The results show that ultrasonic waves can effectively peel off surface attachments of the carbonized product, so that activator has a better mass transfer process and create more active sites. The connectivity of 3D pore network is enhanced as well, so the structure and electrochemical properties of garlic peel-based porous carbon (GBPC) are improved.

View Article and Find Full Text PDF