Publications by authors named "ZhaoYang Li"

The rapid development of the optical-cycle-level ultra-fast laser technologies may break through the bottleneck of the traditional ultra-intense laser [i.e., Petawatt (PW, 10 W) laser currently] and enable the generation of even higher peak-power/intensity lasers.

View Article and Find Full Text PDF

Low-cost, highly active and earth-abundant bifunctional electrocatalyst is very important for the large-scale hydrogen production by water splitting. In the present work, we report a novel two-step method to fabricate three-dimensional (3D) porous catalyst for water splitting. The NiSe nanowires are in-situ formed on Ni foam (NF) by simple hydrothermal method, subsequently NiFe layered double hydroxid (NiFe-LDH) nanosheets vertically grow on the nanowires to form core-shell structure.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT) is considered to be a potential treatment for various diseases including cancers and bacterial infections due to its deep penetration ability and biosafety, but its SDT efficiency is limited by the hypoxia environment of deep tissues. This study proposes creating a potential solution, sonothermal therapy, by developing the ultrasonic interfacial engineering of metal-red phosphorus (RP), which has an obviously improved sonothermal ability of more than 20 °C elevation under 25 min of continuous ultrasound (US) excitation as compared to metal alone. The underlying mechanism is that the mechanical energy of the US activates the motion of the interfacial electrons.

View Article and Find Full Text PDF

Both phototherapy via photocatalysts and physical puncture by artificial nanostructures are promising substitutes for antibiotics when treating drug-resistant bacterial infectious diseases. However, the photodynamic therapeutic efficacy of photocatalysts is seriously restricted by the rapid recombination of photogenerated electron-hole pairs. Meanwhile, the nanostructures of physical puncture are limited to two-dimensional (2D) platforms, and they cannot be fully used yet.

View Article and Find Full Text PDF

The seriousness of the energy crisis and the environmental impact of global anthropogenic activities have led to an urgent need to develop efficient and green fuels. Hydrogen, as a promising alternative resource that is produced in an environmentally friendly and sustainable manner by a water splitting reaction, has attracted extensive attention in recent years. However, the large-scale application of water splitting devices is hindered predominantly by the sluggish oxygen evolution reaction (OER) at the anode.

View Article and Find Full Text PDF

There is limited evidence on the relationships between plasma levels of multiple metals and risk of incident cancer in patients with type 2 diabetes mellitus (T2DM). We examined the associations between plasma levels of 12 metals (iron, copper, zinc, selenium, chromium, manganese, molybdenum, cobalt, nickel, arsenic, cadmium, and lead) and cancer risk in 4573 T2DM patients using Cox proportional hazards models. With a median follow-up of 10.

View Article and Find Full Text PDF

Designing high-efficiency photocatalyst for photocatalytic water splitting is a considerable challenge. Herein, a new MnO/g-CN p-n heterostructure photocatalyst is prepared by an in-situ growth method. The introduction of MnO can enhance light absorption ability of g-CN.

View Article and Find Full Text PDF

Preventing multidrug-resistant bacteria-related infection and simultaneously improving osseointegration are in great demand for orthopedic implants. However, current strategies are still limited to a combination of non-U.S.

View Article and Find Full Text PDF

Implant loosening remains a major clinical challenge for osteoporotic patients. This is because osteoclastic bone resorption rate is higher than osteoblastic bone formation rate in the case of osteoporosis, which results in poor bone repair. Strontium (Sr) has been widely accepted as an anti-osteoporosis element.

View Article and Find Full Text PDF

We sought to evaluate whether essential and toxic metals are cross-sectionally related to blood lipid levels using data among adults from Shimen (n = 564) and Huayuan (n = 637), two counties with different exposure profiles in Hunan province of China. Traditional and grouped weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were performed to assess association between exposure to a mixture of 22 metals measured in urine or plasma, and lipid markers. Most of the exposure levels of metals were significantly higher in Shimen area than those in Huayuan area (all P-values < 0.

View Article and Find Full Text PDF

A light-inspired hydroxyapatite (Hap)/nitrogen-doped carbon dots (NCDs) modified graphene oxide (GO) heterojunction film is developed, which shows a promoted separation of interfacial electrons and holes and an inhibited recombination efficiency via hole depletion. The metabolism of bacteria on this film is significantly inhibited under light irradiation, due to the enhanced photocatalytic and photothermal effects. In addition, the electron transfer from the plasmonic membrane to the GO/NCD/Hap film further inhibits the adenosine triphosphate process of bacteria, thus leading to the synergetic antibacterial efficacy.

View Article and Find Full Text PDF

A PLGA/TiC hybrid coating was successfully deposited on the surface of magnesium-strontium (Mg-Sr) alloys. Compared with the corrosion current density ( ) of the Mg-Sr alloy (7.13 × 10 A/cm), the modified samples (Mg/PLGA/TiC) was lower by approximately four orders of magnitude (7.

View Article and Find Full Text PDF

In order to improve the biological activity and antibacterial activity of magnesium alloy, the single zinc oxide (ZnO) coating was prepared on magnesium alloys using microwave aqueous synthesis method and followed heat treatment. Then, the coated magnesium alloys were irradiated with ultraviolet (UV) light for different time and subsequently immersed in simulated body fluids (SBF). The influences of UV-irradiated time on the morphology, composition, in vitro biological activity and antibacterial activity were investigated.

View Article and Find Full Text PDF

Epidemiologic studies suggest that circulating metals from the natural environment are linked with cardiometabolic health. However, few studies examined the relationship between multiple metals exposure and metabolic phenotypes, especially in obese individuals. We conducted a cross-sectional study to explore the association between 23 urinary metals and metabolic phenotypes in 1392 overweight and obese individuals (592 males, 800 females, mean age 43.

View Article and Find Full Text PDF

Implant loosening is still the major form of the failure of artificial joints. Herein, inspired by the operculum of the river snail, we prepared a novel bionic micro/nanoscale topography on a titanium surface. This bionic topography promoted early cell adhesion through up-regulating the expression of ITG α5β1 and thus accelerated the following cell spreading, proliferation, and differentiation.

View Article and Find Full Text PDF

Owing to the poor penetration depth of light, phototherapy, including photothermal and photodynamic therapies, remains severely ineffective in treating deep tissue infections such as methicillin-resistant Staphylococcus aureus (MRSA)-infected osteomyelitis. Here, we report a microwave-excited antibacterial nanocapturer system for treating deep tissue infections that consists of microwave-responsive FeO/CNT and the chemotherapy agent gentamicin (Gent). This system, FeO/CNT/Gent, is proven to efficiently target and eradicate MRSA-infected rabbit tibia osteomyelitis.

View Article and Find Full Text PDF

Bacterial infectious diseases and bacterial-infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross-linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self-healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity.

View Article and Find Full Text PDF

Background And Aims: Glioblastoma (GBM) is a common and aggressive primary brain tumor, and the prognosis for GBM patients remains poor. This study aimed to identify the key genes associated with the development of GBM and provide new diagnostic and therapies for GBM.

Methods: Three microarray datasets (GSE111260, GSE103227, and GSE104267) were selected from Gene Expression Omnibus (GEO) database for integrated analysis.

View Article and Find Full Text PDF

Background: This study was intended to investigate the genomic landscape of the immune microenvironments of brain metastases in breast cancer.

Methods: Three gene expression profile datasets (GSE76714, GSE125989 and GSE43837) of breast cancer with brain metastases were downloaded from Gene Expression Omnibus (GEO) database. After differential expression analysis, the tumor immune microenvironment and immune cell infiltration were analyzed.

View Article and Find Full Text PDF

Kernel morphology is one of the major yield traits of wheat, the genetic architecture of which is always important in crop breeding. In this study, we performed a genome-wide association study (GWAS) to appraise the genetic architecture of the kernel traits of 319 wheat accessions using 22,905 single nucleotide polymorphism (SNP) markers from a wheat 90K SNP array. As a result, 111 and 104 significant SNPs for Kernel traits were detected using four multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) and three single-locus models (FarmCPU, MLM, and MLMM), respectively.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are increasingly recognized as non-enzymatic players in the processes of radicle elongation growth and endosperm weakening during seed germination. NADPH oxidases (EC 1.6.

View Article and Find Full Text PDF

In recent years, the development of sewage treatment technologies has made many treatment options available in towns. Selecting the most appropriate alternative (MAA) can make the best use of existing resources to achieve the optimal effect, which has become a topical issue in academic circles. The Liao River basin in China is an important area for agricultural cultivation and animal husbandry, but it also suffers from water shortages and pollution.

View Article and Find Full Text PDF

Three-dimensional (3-D) light solitons in space-time, referred to as light bullets, have many novel properties and wide applications. Here we theoretically show how the combination of diffraction-free beam and ultrashort pulse spatiotemporal-coupling enables the creation of a straight-line propagation light bullet with freely tunable velocity and acceleration. This light bullet could propagate with a constant superluminal or subluminal velocity, and it could also counter-propagate with a very fast superluminal velocity (e.

View Article and Find Full Text PDF

Clinically, methicillin-resistant (MRSA) biofilm infection inevitably induces the failure of bone implants. Herein, a hydrophilic and viscous hydrogel of poly(vinyl alcohol) modified with chitosan, polydopamine, and NO release donor was formed on a red phosphorus nanofilm deposited on a titanium implant (Ti-RP/PCP/RSNO). Under the irradiation of near-infrared light (NIR), peroxynitrite (ONOO) was formed by the reaction between the released NO and superoxide (O) produced by the RP nanofilm.

View Article and Find Full Text PDF

Bacterial infection is a serious public health issue because this may cause bacterial pneumonia and bacteria-infected sepsis. The conventional antibiotic therapy can cause bacterial resistance and other adverse effects. Herein, we designed a novel photoresponsive hybrid, in which MoS nanosheets were doped with copper ions (MoS@Cu).

View Article and Find Full Text PDF