Publications by authors named "Zhao-yang Zhang"

Azo molecules, being extensively studied as photoswitches, have demonstrated versatile photoswitching performance and applications in solution-phase systems. However, the dense molecular packing and insufficient conformational freedom in the solid/crystalline state typically pose a challenge to their ⇆ isomerization. This study presents a breakthrough in solid-state azo chemistry, where the investigated azobispyrazole molecules are capable of achieving high → photoconversion, ranging from 85% to nearly quantitative (96%), and quantitative → photoswitching in their crystalline states.

View Article and Find Full Text PDF

Azobenzenes (Ph-N═N-Ph) are known as the most widely studied molecular photoswitches, and the recent rise of azoheteroarenes (Het-N═N-Ph or Het-N═N-Het) offers great opportunities to advance this already mature field. A common limitation is that azo-switches generally require harmful UV light for activation, which hinders their application across various fields. Despite great efforts in developing visible-light azobenzenes over the past few decades, the potential of visible-light heteroaryl azoswitches remains largely unexplored.

View Article and Find Full Text PDF

High-performance organic devices with dynamic and stable modulation are essential for building devices adaptable to the environment. However, the existing reported devices incorporating light-activated units exhibit either limited device stability or subpar optoelectronic properties. Here, we synthesize a new optically tunable polymer dielectric functionalized with photochromic arylazopyrazole units with a cis-isomer half-life of as long as 90 days.

View Article and Find Full Text PDF

Although natural sunlight is one of the most abundant and sustainable energy resources, only a fraction of its energy is currently harnessed and utilized in photoactive systems. The development of molecular photoswitches that can be directly activated by sunlight is imperative for unlocking the full potential of solar energy and addressing the growing energy demands. Herein, we designed a series of 2-amino-1,3-bis-azopyrazoles featuring a coupled π system, resulting in a pronounced redshift in their spectral absorption, reaching up to 661 nm in the red region.

View Article and Find Full Text PDF

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy.

View Article and Find Full Text PDF

A metal-free and atom-economic route for the synthesis of naphtho[1,2-]furan-3-ones has been realized via -TsOH·HO-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.

View Article and Find Full Text PDF

The silver coating is widely used in electronic device manufacturing due to its excellent conductivity and soldering properties. Conventional preparation of local silver coating often uses the preplated silver, mask high-speed silver plating, and deplated silver processes. In this paper, the laser-induced electrodeposition technique is used to perform maskless laser-induced localized electrodeposition on a copper substrate preplated with a layer of silver.

View Article and Find Full Text PDF

Background: Weeds grow aggressively in agricultural fields, leading to reduced crop yields and an inability to meet the growing demand for food. Herbicides are currently the most effective method for weed control. However, the overuse of herbicides has resulted in the evolution of resistance mutants and has caused environmental pollution.

View Article and Find Full Text PDF

Photoswitches can absorb solar photons and store them as chemical energy by photoisomerization, which is regarded as a promising strategy for photochemical solar energy storage. Although many efforts have been devoted to photoswitch discovery, the solar efficiency, a critical fundamental parameter assessing the solar energy conversion ability, has attracted little attention and remains to be studied comprehensively. Here we provide a systematic evaluation of the solar efficiency of typical azo-switches including azobenzenes and azopyrazoles, and gain a comprehensive understanding on its decisive factors.

View Article and Find Full Text PDF

Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity.

View Article and Find Full Text PDF

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (, HgCl, HgO, HgS, and HgSe). Herein, we demonstrate a superstable HgSeCl compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in HgSeCl, with the highest mercury dissociation energy (4.

View Article and Find Full Text PDF

Following the progress on mono-heteroaryl azo switches (Het-N=N-Ph), a few bis-heteroaryl azo switches (Het-N=N-Het) have been studied recently, whereas the nonsymmetric bis-heteroaryl ones (Het -N=N-Het ) that can combine the respective merits of each heterocycle, have received little attention. Here we report thiazolylazopyrazoles as nonsymmetric bis-heteroaryl azo switches that combine the visible-light switching character of the thiazole ring and the ease of o-substitution of the pyrazole ring. Thiazolylazopyrazoles can achieve (near-)quantitative visible-light isomerization in both directions and long Z-isomer thermal half-lives of several days.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of conserved small RNA with a length of 21-24 nucleotides in eukaryotes, which are involved in development and defense responses against biotic and abiotic stresses. By RNA-seq, Osa-miR444b.2 was identified to be induced after () infection.

View Article and Find Full Text PDF

Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported.

View Article and Find Full Text PDF

An optimal temperature is crucial for a broad range of applications, from chemical transformations, electronics, and human comfort, to energy production and our whole planet. Photochemical molecular thermal energy storage systems coupled with phase change behavior (MOST-PCMs) offer unique opportunities to capture energy and regulate temperature. Here, we demonstrate how a series of visible-light-responsive azopyrazoles couple MOST and PCMs to provide energy capture and release below 0 °C.

View Article and Find Full Text PDF

The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research identifies Fol-milR1, a small RNA from the fungus Fusarium oxysporum f. sp. lycopersici, as a key player in affecting tomato plant resistance during infections.
  • The study found that knockout strains lacking Fol-milR1 showed reduced virulence on susceptible tomato plants, while overexpressing strains displayed increased virulence against resistant varieties.
  • A targeted gene, SlyFRG4, crucial for resistance, is regulated by Fol-milR1 and interacts with the host's immune response, showing how this fungal RNA can suppress tomato immunity to facilitate infection.
View Article and Find Full Text PDF

Azobenzenes are classical molecular photoswitches that have been widely used. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatic rings has emerged as a strategy to expand molecular diversity and access improved photoswitching properties. Many mono-heteroaryl azo molecules with unique structures and/or properties have been developed, but the potential of bis-heteroaryl architectures is far from fully exploited.

View Article and Find Full Text PDF

Background: Overexpression of SQSTM1 (sequestosome 1, P62) and nuclear factor-κB (NF-κB) plays an important role in the invasion and metastasis of a variety of malignant tumors.

Aim: To explore the expression of P62 and NF-κB in pancreatic cancer and their relationship with clinicopathological features.

Methods: The expression levels of P62 and NF-κB were analyzed by immunohistochemistry with a tissue chip containing 40 cases of human pancreatic carcinoma.

View Article and Find Full Text PDF

Discovering physicochemical principles for simultaneous harvesting of multiform energy from the environment will advance current sustainable energy technologies. Here we explore photochemical phase transitions-a photochemistry-thermophysics coupled regime-for coharvesting of solar and thermal energy. In particular, we show that photon energy and ambient heat can be stored together and released on demand as high-temperature heat, enabled by room-temperature photochemical crystal↔liquid transitions of engineered molecular photoswitches.

View Article and Find Full Text PDF

Background: The integrin β6 gene, which is expressed in epithelial cancer, plays a pivotal role in various aspects of cancer progression. The present research for integrin β6 regulation mainly focuses on the post-transcription and translation related regulation mechanism and its role in tumorigenesis. The mechanisms of how the integrin β6 gene is regulated transcriptionally, and the promoter and transcription factors responsible for basic transcription of integrin β6 gene remain unknown.

View Article and Find Full Text PDF

As a high-valent iron compound with Fe in the highest accessible oxidation state, ferrate(VI) brings unique opportunities for a number of areas where chemical oxidation is essential. Recently, it is emerging as a novel oxidizing agent for materials chemistry, especially for the oxidation of carbon materials. However, the reported reactivity in liquid phase (HSO medium) is confusing, which ranges from aggressive to moderate, and even incompetent.

View Article and Find Full Text PDF