Publications by authors named "Zhao-yang Guo"

Mariculture tail water is characterized as the low C/N ratios and thus blocks the conventional heterotrophic denitrification process due to insufficient carbon source. Therefore, oligotrophic marine bacteria with heterotrophic nitrification and aerobic denitrification (HN-AD) are urgently required to bioaugment aerobic biological filter. In this study, Marinobacter alkaliphilus SBY-1 was isolated and confirmed optimal nitrate removal capacity at a rate of 716 mg/L·d without ammonia production or nitrite accumulation under initial nitrate concentration of 800 mg/L, pH 7, salinity 20 ‰, sodium acetate as the carbon source, and low C/N ratios of 3.

View Article and Find Full Text PDF

Tetracycline (TC) was widely used and frequently detected in various water bodies, where the presence of TC posed a significant threat to the health of aquatic organisms. Furthermore, antibiotics were hardly degraded by biological treatment. Thus, in order to enhance the removal of TC, we proposed the use of a novel ultraviolet/sodium percarbonate (UV/SPC) advanced oxidation process and initiated an in-depth study.

View Article and Find Full Text PDF

Mariculture wastewater is characterized by low organic carbon to nitrogen ratio (C/N) but high nitrate concentration, which makes it difficult to remove nitrate by the completely heterotrophic denitrification. However, high nitrate discharge poses a threat to the natural environment and human health. Thus, we enriched sulphur-based autotrophic denitrifying (SAD) microbiota and optimized the nitrate removal under different environmental factors and electron donor conditions.

View Article and Find Full Text PDF

Recirculating aquaculture systems (RAS) effluent is characterized by low COD to total inorganic nitrogen ratio (C/N), excessive nitrate, and the presence of traces of antibiotics. Hence, it urgently needs to be treated before recycling or discharging. In this study, four denitrification bioreactors at increasing C/N ratios (0, 0.

View Article and Find Full Text PDF

Remediation of mariculture wastewater is of great practical importance. In this study, sediment microbial fuel cells (SMFCs) were adopted and carbon felt anodes were modified to enhance COD and ammonia removal in mariculture system. The results showed that the SMFC anode with 5 % (w/w) graphene oxide (GO) coating performed best in pollutants removal and electricity generation.

View Article and Find Full Text PDF

The direct discharge of trace amounts of antibiotics in mariculture wastewater results in adverse effect on the ecological environment of receiving waters. Hence, the degradation of tetracycline (TC) in mariculture wastewater by the ultraviolet/peroxydisulfate (UV/PS) process was investigated in this study. The results revealed that 95.

View Article and Find Full Text PDF

The increase in mariculture activities worldwide has not only led to a rise of nitrogen compounds in the ecosystem but has also intensified the accumulation of antibiotics in both terrestrial and marine environments. This study focused on the effect of typical antibiotics, specifically sulfamethoxazole (SMX) on nitrate removal from mariculture wastewater by aerobic denitrification process; an aerobic denitrification system feeding with 148.2 mg/L COD, 8.

View Article and Find Full Text PDF

Antibiotics are widely dosed in mariculture sector, resulting in substantial antibiotics residues. Hence, mariculture wastewater is urgent to be treated before discharging. In this study, the anoxic/oxic moving bed biofilm reactor (A/O-MBBR) was used to treat the wastewater containing sulfamethoxazole (SMX) from mariculture, SMX removal mechanism and the variation of antibiotic-resistant genes (ARGs) were investigated.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is considered one of the serious toxic pollutants in mariculture environment. Consequently, it is necessary to develop an effective strategy to prevent the production of sulfide. In this study, we modified the ceramsite with iron (ICC) and prepared a microbial agent, i.

View Article and Find Full Text PDF

Although antibiotics are heavily used in mariculture, only a small portion of the added antibiotics is absorbed. Little is known about the response process of antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes to antibiotic-containing wastewater entering a wastewater treatment system. In this study, an anoxic/aerobic moving bed biofilm reactor (A/O-MBBR) was used to treat marine aquaculture wastewater containing sulfamethoxazole (SMX).

View Article and Find Full Text PDF

In this study, three sequence batch reactors were selected to evaluate the effects of salt-tolerant activated sludge acclimation. The effect of salinity increase rate on pollutant removal, physicochemical characteristics of activated sludge, and microbial community were investigated. The results showed that a rapid salinity increase to 30‰ (within 30 d) reduced removal efficiencies of COD and NH-N from 85.

View Article and Find Full Text PDF

Due to insufficient amount of soluble phosphate and poor persistence of traditional chemical phosphate fertilizers in agricultural soils, the eco-friendly and sustainable phosphorus sources for crops are urgently required. The efficient phosphate-releasing fungal strain designated y2 was isolated and identified by the internal transcribed spacer of rDNA as Penicillium oxalicum y2. When lecithin, Ca(PO), or ground phosphate rock were separately used as sole phosphorus source, different phosphate-releasing modes were observed.

View Article and Find Full Text PDF

In nature, animals constantly receive a multitude of sensory stimuli, such as visual, auditory, and somatosensory. The integration across sensory modalities is advantageous for the precise processing of sensory inputs which is essential for animals to survival. Although some principles of cross-modality integration have been revealed by many studies, little insight has been gained into its functional potentials.

View Article and Find Full Text PDF

Environmental threat induced by residual antibiotics in marine aquaculture wastewater is an urgent problem to be solved. In this study, one sulfamethoxazole (SMX)-degrading bacterium, Planococcus kocurii O516 was isolated from high SMX marine aquafarm. The isolate was able to consume more than 60% of SMX with the initial concentration of 10 mg L within 72 h.

View Article and Find Full Text PDF

In the research, an anaerobic membrane bioreactor (AnMBR) was used to treat simulated salty organic wastewater, and the effect of salinity on reactor performance and membrane fouling properties was investigated. The results indicated that when the influent salinity increased gradually but was lower than 9.1 g·L, the reactor ran stably and the effluent performance was good.

View Article and Find Full Text PDF

The influence of silver nanoparticles (AgNPs) on the denitrification performance, enzyme activity, and functional gene relative abundances of sediment was investigated based on the methods of laboratory simulation incubation in the Dagu River estuary and bay area in the northwest of Jiaozhou Bay. The different dosages of AgNPs (i.e.

View Article and Find Full Text PDF

A heterotrophic nitrification and aerobic denitrification strain, B307, was isolated from the sediment of Jiaozhou Bay. The strain was identified by 16S rRNA sequence analysis, and its optimization condition and salt-tolerance characteristics were studied by single factor experiment. The denitrification effect in single or mixed nitrogen sources was investigated under optimum conditions.

View Article and Find Full Text PDF

Thermophile pretreatment of activated sludge greatly improves the biodegradability of sludge, but whether the pretreated products are suitable for the electricity generation of microbial fuel cells (MFCs) is still little known. In this study, municipal activated sludge pretreated by a thermophilic bacterium and heating, respectively, was separately fed into the MFCs. The performance of MFCs was examined and changes of anodic microbial communities were investigated with scanning electron microscopy and 16S rRNA gene high-throughput sequencing on the Illumina Miseq platform.

View Article and Find Full Text PDF

Thermophiles hydrolysis and acidogens fermentation were sequentially adopted to pretreat excess sludge for microbial fuel cell (MFC) electricity production. The results indicated that MFC fed with the thermophiles-acidogens pretreated sludge (MFC AB), reached a higher removal of ammonia nitrogen than the MFC fed with the heating hydrolysis and acidogens fermentation pretreated sludge (MFC NB). However, compared with the MFC AB, MFC NB presented a better performance for removal of soluble chemical oxygen demand (SCOD) (90.

View Article and Find Full Text PDF

Performance of microbial fuel cells (MFCs) was monitored during the influent nutrient change from lactate to glucose/acetate/propionate and then to lactate. Meanwhile, anodic microbial communities were characterized by culture-independent molecular biotechnologies. Results showed MFC performance recovered rapidly when the lactate was replaced by one of its metabolic intermediates acetate, while it needed a longer time to recover if lactate substrate was converted to glucose/propionate or acetate to lactate.

View Article and Find Full Text PDF

Different aeration rates and modes in an aerobic tank of an anaerobic/anoxic/aerobic (AO) process were investigated to reveal their influence on nitrogen and phosphorus removal efficiency. Meanwhile, Illumina high-throughput sequencing of partial 16S rRNA gene of bacteria was conducted to monitor the abundance and composition of microbial communities. The results showed that higher aeration rate led to better nutrients' removal efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Two new strains of cold- and salt-tolerant ammonia-oxidizing bacteria (AOB), Ochrobactrum sp. (HXN-1) and Aquamicrobium sp. (HXN-2), were discovered in the Liaohe Estuarine Wetland, China.
  • The study optimized factors like ammonia concentration, pH, carbon-nitrogen ratio, and petroleum hydrocarbons (PHCs) to enhance these bacteria's ammonia-oxidation abilities.
  • Both strains exhibited over 80% ammonia nitrogen removal efficiency at high salinity levels and maintained considerable removal rates (53% for HXN-1 and 62% for HXN-2) at low temperatures of 15°C.
View Article and Find Full Text PDF

The feasibility of treating pretreated excess sludge and capacity of supplying continuous power of microbial fuel cells (MFCs) were investigated. Two-chamber microbial fuel cells were started up and operated by using thermal pretreated excess sludge as the substrate. Potential fluctuations were achieved by changing the cathode electron acceptor.

View Article and Find Full Text PDF

To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.

View Article and Find Full Text PDF

Two strains (Pseudomonas taiwanensis PYR1 and Acinetobacter baumannii INP1) were isolated from PAH-contaminated Liaohe estuarine wetland using enrichment. The cells of PYR1 and INP1 were immobilized in cinder beads for pyrene and indeno(1,2,3-cd)pyrene biodegradation in wetland. Biodegradation of pyrene and indeno(1,2,3-cd)pyrene in soils from wetland was carried out in pots using free cells as well as those immobilized in cinder beads to ascertain the role of bioaugmentation.

View Article and Find Full Text PDF