Designing highly efficient and stable electrocatalysts for hydrogen evolution reactions (HER) is essential to the production of green and renewable hydrogen. Metal-organic framework (MOF) precursor strategies are promising for the design of excellent electrocatalysts because of their porous architectures and adjustable compositions. In this study, a hydrogen-bonded organic framework (HOF) nanowire was developed as a precursor and template for the controllable and scalable synthesis of CoRu-MOF nanotubes.
View Article and Find Full Text PDFAims: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis.
View Article and Find Full Text PDFIn order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.
View Article and Find Full Text PDF