Publications by authors named "Zhao-li Chen"

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence.

View Article and Find Full Text PDF

To study the protective effects of resveratrol (RSV) on cardiac function in rats with high altitude hypobaric hypoxia and its mechanisms. Thirty-six rats were randomly divided into control group, hypobaric hypoxia group (HH) and hypobaric hypoxia + RSV group (HH+RSV) according to the random number, 12 rats in each group. Rats in the HH and HH+RSV groups were subjected to chronic long-term high altitude hypobaric hypoxia intervention for 8 weeks in a hypobaric chamber at a simulated altitude of 6 000 m for 20 h / d.

View Article and Find Full Text PDF

Objective: To investigate the protective effects of three Polyphenolic compounds on intestinal microbial communities in mice exposed intermittent plateau hypoxia.

Methods: In this study, 60 healthy male Balb/c mice were randomly divided into plain control group, plateau control group, primary anthocyanin intervention group, quercetin intervention group and resveratrol intervention group, 12 mice in each group. Primary anthocyanin, quercetin and resveratrol were administrated by gavage at the doses of 50, 100 and 20 mg/kg in pharmacological intervention group, respectively.

View Article and Find Full Text PDF

Exact analytical soliton solutions play an important role in soliton fields. Soliton solutions were obtained with some special constraints on the nonlinear parameters in nonlinear coupled systems, but they usually do not hold in real physical systems. We successfully release all usual constrain conditions on nonlinear parameters for exact analytical vector soliton solutions in N-component coupled nonlinear Schrödinger equations.

View Article and Find Full Text PDF

Dark soliton is usually seen as one of the simplest topological solitons, due to phase shift across its intensity dip. We investigate phase characters of single-valley dark soliton (SVDS) and double-valley dark soliton (DVDS) in a single-mode optical fiber with third-order dispersion and delayed nonlinear response. Notably, two different phase shifts can produce an SVDS with the same velocity under some conditions, which is not admitted for a dark soliton with only the second-order dispersion and self-phase modulation, whose phase shift and velocity is a one-to-one match.

View Article and Find Full Text PDF

A gradient stress model of PC12 cells induced by corticosterone was established to provide a basis for the evaluation and regulation of cell stress. The effect of corticosterone on cell viability was observed by measuring PC12 cell viability at different concentrations of corticosterone (0~1 000 μmol/L) after different intervention times (8~48 h) to screen the cell models for optimal intervention conditions. Key stress indicators (MDA, SOD, NADH, LDH) were measured spectrophotometrically and microscopically to evaluate the models.

View Article and Find Full Text PDF

Weak Gaussian perturbations on a plane wave background could trigger lots of rogue waves (RWs), due to modulational instability. Numerical simulations showed that these RWs seemed to have similar unit structure. However, to the best of our knowledge, there are no relative results to prove that these RWs have the similar patterns for different perturbations, partly due to that it is hard to measure the RW pattern automatically.

View Article and Find Full Text PDF

The dynamics of Fermi-Pasta-Ulam (FPU) recurrence in a Manakov system is studied analytically. Exact Akhmediev breather (AB) solutions for this system are found that cannot be reduced to the ABs of a single-component nonlinear Schrödinger equation. Expansion-contraction cycle of the corresponding spectra with an infinite number of sidebands is calculated analytically using a residue theorem.

View Article and Find Full Text PDF

We obtain multivalley dark soliton solutions with asymmetric or symmetric profiles in multicomponent repulsive Bose-Einstein condensates by developing the Darboux transformation method. We demonstrate that the width-dependent parameters of solitons significantly affect the velocity ranges and phase jump regions of multivalley dark solitons, in sharp contrast to scalar dark solitons. For double-valley dark solitons, we find that the phase jump is in the range [0,2π], which is quite different from that of the usual single-valley dark soliton.

View Article and Find Full Text PDF

We develop linear stability analysis (LSA) to quantitatively predict the dynamics of a perturbed plane wave in nonlinear systems. We take a nonintegrable fiber model with purely fourth-order dispersion as an example to demonstrate this method's effectiveness. For a Gaussian-type initial perturbation with cosine-type modulation on a plane wave, its propagation velocities, periodicity, and localization are predicted successfully, and the range of application is discussed.

View Article and Find Full Text PDF

Peregrine rogue wave excitation has applications in gaining high-intensity pulses, etc., and a high-order rogue wave exhibits higher intensity. An exact solution and collision between breathers are two existing ways to excite high-order ones.

View Article and Find Full Text PDF

Objective: To investigate the effects of mitochondrial ATPase inhibitory factor 1 (Atpif1) on hemoglobin synthesis.

Methods: Firstly, the K562 cells were divided into 2 groups, hypoxia-treated group and normoxic control group. The K562 cells in hypoxia-treated group were treated with 2% oxygen.

View Article and Find Full Text PDF

Objective: To investigate the protective effects of Sestrin2 protein on lung epithelial Beas-2B cells in the heat-exposure environment and its mechanism.

Methods: Lung epithelial Beas-2B cells were cultured at 37℃, 39℃, 40℃ and 41℃ respectively. Cells were harvested at different times (0, 3, 6 and 12 h) after pancreatin digestion.

View Article and Find Full Text PDF

We investigate nondegenerate bound-state solitons systematically in multicomponent Bose-Einstein condensates, through developing the Darboux transformation method to derive exact soliton solutions analytically. In particular, we show that bright solitons with nodes correspond to the excited bound states in effective quantum wells, in sharp contrast to the bright solitons and dark solitons reported before (which usually correspond to ground state and free state, respectively). We further demonstrate that bound-state solitons with nodes are induced by incoherent superposition of solitons in different components.

View Article and Find Full Text PDF

We study numerically the evolutions of perturbations at critical points between modulational instability and stability regimes. It is demonstrated that W-shaped solitons and rogue waves can be both excited from weak resonant perturbations at the critical points. The rogue wave excitation at the critical points indicates that rogue wave comes from modulation instability with resonant perturbations, even when the baseband modulational instability is absent.

View Article and Find Full Text PDF

We study the beating effects of solitons in multicomponent coupled Bose-Einstein condensate systems. Our analysis indicates that the period of beating behavior is determined by the energy eigenvalue difference in the effective quantum well induced by solitons, and the beating pattern is determined by the eigenstates of a quantum well, which are involved in the beating behavior. We show that the beating solitons correspond to linear superpositions of eigenstates in some quantum wells, and the correspondence relations are identical for solitons in both an attractive interaction and a repulsive interaction condensate.

View Article and Find Full Text PDF

Objective: To establish an animal model for loaded swimming, so as to investigate the energy metabolism effects of soybean isoflavones (SI) on swimming mice.

Methods: Thirty male Kunming mice were randomly divided into three groups:normal control, swimming group, and swimming+SI group. The normal control group mice were fed a basic AIN-93M diet, the SI groups were supplied with soybean isoflavones(4 g/kg).

View Article and Find Full Text PDF

We discuss how to understand the dynamical process of Kuznetsov-Ma breather, based on some basic physical mechanisms. It is shown that the dynamical process of Kuznetsov-Ma breather involves at least two distinctive mechanisms: modulational instability and the interference effects between a bright soliton and a plane-wave background. Our analysis indicates that modulational instability plays dominant roles in the mechanism of Kuznetsov-Ma breather admitting weak perturbations, and the interference effect plays a dominant role for the Kuznetsov-Ma breather admitting strong perturbations.

View Article and Find Full Text PDF

We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties.

View Article and Find Full Text PDF

We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation.

View Article and Find Full Text PDF

We study the correspondence between modulational instability and types of fundamental nonlinear excitation in a nonlinear fiber with both third-order and fourth-order effects. Some soliton excitations are obtained in the modulational instability regime which have not been found in nonlinear fibers with second-order effects and third-order effects. Explicit analysis suggests that the existence of solitons is related to the modulation stability circle in the modulation instability regime, and they just exist in the modulational instability regime outside of the modulational stability circle.

View Article and Find Full Text PDF

Unlabelled: The development of pathogenic mechanisms, specific antiviral treatments and preventive vaccines for hepatitis C virus (HCV) infection has been limited due to lack of cell culture models that can naturally imitate the entire HCV life cycle. Here, we established an HCV cell culture model based on human fetal liver stem cells (hFLSCs) that supports the entire blood-borne hepatitis C virus (bbHCV) life cycle. More than 90% of cells remained infected by various genotypes.

View Article and Find Full Text PDF

We study symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime of a single-mode fiber. Key characteristics of such multipeak solitons, such as the formation mechanism, propagation stability, and shape-changing collisions, are revealed in detail. Our results show that this multipeak (symmetric or asymmetric) mode could be regarded as a single pulse formed by a nonlinear superposition of a periodic wave and a single-peak (W-shaped or antidark) soliton.

View Article and Find Full Text PDF

Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription.

View Article and Find Full Text PDF