Atherosclerosis is a chronic inflammatory disease characterized with innate and adaptive immunity but also involves pyroptosis. Few studies have explored the role of pyroptosis in advanced atherosclerotic plaques from different vascular beds. Here we try to identify the different underlying function of pyroptosis in the progression of atherosclerosis between carotid arteries and femoral.
View Article and Find Full Text PDFFabricating two-dimensional transition-metal dichalcogenide (TMD)-based unique composites is an effective way to boost the overall physical and chemical properties, which will be helpful for the efficient and fast capture of elemental mercury (Hg) over a wide temperature range. Herein, we constructed a defect-rich CuWS nano-homojunction decorated on covalent organic frameworks (COFs) with abundant S vacancies. Highly well-dispersed and uniform CuWS nanoparticles were immobilized on COFs strongly via an ion pre-anchored strategy, consequently exhibiting enhanced Hg removal performance.
View Article and Find Full Text PDFRecycling waste tires through pyrolysis technology generates refractory wastewater, which is harmful to the environment if not disposed properly. In this study, a combined process of coagulation detoxification and biodegradation was used to treat tire pyrolysis wastewater. Organics removal characteristics at the molecular level were investigated using electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).
View Article and Find Full Text PDFPoly(vinylidene fluoride) (PVDF) membranes are a commonly used cheap material and have been widely used in wastewater treatment. In this study, a simple strategy was proposed to construct PVDF--PEG membranes with an interpenetrating network structure by simulating plant roots for the treatment of oil/water emulsion. Meanwhile, the hydrophilicity, antifouling, and mechanical properties of the membrane were improved.
View Article and Find Full Text PDFAlthough several cases of family clusters with SARS-Cov-2 infection have been reported, there are still limited data preventing conclusions from being drawn regarding the characteristics and laboratory findings in the COVID-19 population within family clusters. In the present study, we retrospectively collected five family clusters with COVID-19 and summarized the dynamic profiles of the clinical characteristics, laboratory findings, immune markers, treatment and prognosis of this population. Furthermore, we also compared clinical and laboratory data between the SARS-Cov-2 infection with family cluster (n = 21) and those without family cluster (n = 16).
View Article and Find Full Text PDFInspired by the self-purification process and a low nitrogen content of the ocean, and the fact that the driving-force behind ecological cycle is solar irradiation, a novel photochemical strategy was designed to spontaneously remove inorganic ammonia nitrogen from wastewater with solar irradiation. This strategy is based on the principles of green chemistry and energy efficiency, and meanwhile the prevention from the introduction of accompanying pollution. In our strategy, a photo-Fe (or Mn)-O system was built to remove ammonia-nitrogen from its aqueous solution.
View Article and Find Full Text PDFDissolved organic matter (DOM) composition in salt lakes is critical for water quality and aquatic ecology, and the salinization of salt lakes affects the DOM composition. To the best of our knowledge, no study has explored the effects of salinity on salt lake DOM composition at the molecular level. In this work, we selected Qinghai Lake (QHL) and Daihai Lake (DHL) as typical saline lakes.
View Article and Find Full Text PDFCoagulation is an important process to remove organics from water. The molecular composition and structure of organic matter influence water quality in many ways, and the lack of information regarding the organics removed by different coagulants makes it challenging to optimize coagulation processes and ensure reclaimed water safety. In this paper, we investigated coagulation of secondary biological effluent from a municipal sewage treatment plant with different coagulants.
View Article and Find Full Text PDFTypes and structures of phosphorus compounds influence the removal of phosphorus by coagulation. Until now, the molecular-level interaction between coagulants and phosphorus (especially organophosphates) and the relationship between removal efficiency and phosphorus structure have not been clear. This work investigated the removal of phosphorus with different structures using conventional coagulants (poly aluminum chloride (PACl) and polymerized ferric sulfate (PFS)) and a novel covalently-bound inorganic-organic hybrid coagulant (CBHyC).
View Article and Find Full Text PDFAim: To investigate the effect of anti-vascular epithelial growth factor (VEGF) agents on the expression of fibrosis-related inflammatory mediators under normoxic and hypoxic conditions, and to further clarify the mechanism underlying fibrosis after anti-VEGF therapy.
Methods: Human retinal pigment epithelial (RPE) cells were incubated under normoxic and hypoxic conditions. For hypoxia treatment, CoCl at 200 µmol/L was added to the media.
Guang Pu Xue Yu Guang Pu Fen Xi
December 2016
The interaction between 20(S)-protopanaxatriol (PPT) and bovine serum albumin ( BSA) was studied with fluorescence quenching technique and ultra-violet absorption spectroscopy. The results indicated that PPT led to the intrinsic fluorescence quenching of BSA through a static quenching process .The binding constants of PPT with BSA obtained with fluorescence quenching method were calculated as 0.
View Article and Find Full Text PDFAim: This study aimed to evaluate the prognostic value of glutathione-S-transferase M3 (GSTM3) gene promoter methylation in patients with acute-on-chronic hepatitis B liver failure (ACHBLF).
Methods: A total of 119 patients with ACHBLF, 60 patients with chronic hepatitis B and 30 healthy controls were enrolled. We used a quantitative methylation detection technique, MethyLight, to examine the methylation levels of GSTM3 in peripheral blood mononuclear cells.
Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy, for which no effective therapy is currently available. The aim of the present study was to investigate the effect of treatment with bone marrow mesenchymal stem cells (BMSCs) in combination with recombinant human erythropoietin (rHuEPO) on BPD‑induced mouse lung injury, and discuss the underlying mechanism. The BPD model was established by the exposure of neonatal mice to continuous high oxygen exposure for 14 days, following which 1x106 BMSCs and 5,000 U/kg rHuEPO were injected into the mice 1 h prior to and 7 days following exposure to hyperoxia.
View Article and Find Full Text PDFIt is meaningful to research the Triboelectric Nanogenerators (TENG), which can create electricity anywhere and anytime. There are many researches on the structures and materials of TENG to explain the phenomenon that the maximum voltage is stable and the current is increasing. The output voltage of the TENG is high about 180-400 V, and the output current is small about 39 μA, which the electronic devices directly integration of TENG with Li-ion batteries will result in huge energy loss due to the ultrahigh TENG impedance.
View Article and Find Full Text PDFAs an emerging persistent organic pollutant (POPs), perfluorooctanoic acid (PFOA) exists widely in natural environment. It is of particular significance to develop efficient techniques to remove low-concentration PFOA from the contaminated waters. In this work, we adopted a new material, carbon nanotube (CNT) sponge, as electrode to enhance electro-oxidation and achieve high removal efficiency of low-concentration (100μgL(-1)) PFOA from water.
View Article and Find Full Text PDFThe aim of the present study was to investigate the effect of bone marrow‑derived mesenchymal stem cells (BMSCs) in the treatment of lung injury in a mouse model of bronchopulmonary dysplasia (BPD) and examine the underlying mechanisms. A mouse model of BPD was created using continuous exposure to high oxygen levels for 14 days. BMSCs were isolated, cultured and then labeled with green fluorescent protein.
View Article and Find Full Text PDFThe aim of the present study was to investigate the protective effect of baicalin (BA) against ischemia-reperfusion (I/R) injury in isolated rat hearts. Sprague-Dawley rat hearts were rapidly removed, mounted on a Langendorff apparatus and subjected to 30 min ischemia followed by 30 min reperfusion with Krebs-Henseleit (K-H) solution at 37°C to establish the isolated I/R injury model. All animals (n=50) were randomly divided into five groups (n=10 in each): I, normal control; II, I/R; III I/R plus 20 mg/kg BA; IV, I/R plus 40 mg/kg BA; and V, I/R plus 80 mg/kg BA.
View Article and Find Full Text PDFThe aim of the present study was to investigate the effects of PS-341 on vascular remodeling in an experimental rat model of high blood flow-induced pulmonary arterial hypertension (PAH), as well as to elucidate its mechanisms of action. We established the PAH model by a surgical method that implanted a left-to-right shunt. Three days post-surgery, the animals were randomly assigned to 3 groups (n=15 in each group): sham-operated (control), shunt (model) and PS-341 (treated) groups.
View Article and Find Full Text PDFIt is necessary to develop "green" disinfection technology which does not produce disinfection by-products. Lysozyme-layered double hydroxide nanocomposites (LYZ-LDHs) were prepared by intercalating LYZ in LDH for the first time. Their antibacterial activity was evaluated using staphylococcus aureus as a target.
View Article and Find Full Text PDFConventional zerovalent iron (ZVI) technology has low arsenic removal efficiency because of the slow ZVI corrosion rate. In this study, microbial fuel cell (MFC)-zerovalent iron (MFC-ZVI) hybrid process has been constructed and used to remove arsenite (As(III)) from aqueous solutions. Our results indicate that the ZVI corrosion directly utilizes the low-voltage electricity generated by MFC in the hybrid process and both the ZVI corrosion rate and arsenic removal efficiency are therefore substantially increased.
View Article and Find Full Text PDFPS-341, a proteasome inhibitor, is suggested to prevent the vascular remodeling induced by high-flow pulmonary artery hypertension (PAH), but the mechanism remains unclear. The aim of the current study was to investigate the effects and possible mechanism of PS-341 on hypertension-induced vascular remodeling. Male Sprague-Dawley rats were subjected to surgical methods to produce a shunt model of PAH.
View Article and Find Full Text PDFThe aim of the present study was to investigate the effect of bone marrow mesenchymal stem cell (BMSC) transp1antation on lung and heart damage in a rat model of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). The animals were randomly divided into 3 groups: control, PAH and BMSC implantation groups. Structural changes in the pulmonary vascular wall, such as the pulmonary artery lumen area (VA) and vascular area (TAA) were measured by hematoxylin and eosin (H&E) staining, and the hemodynamics were detected by echocardiography.
View Article and Find Full Text PDFMulti-walled carbon nanotube (MWCNT)-modified electrodes can promote the direct electron transfer (DET) of cytochrome c (Cyt c). There are several possible mechanisms that explain the DET of Cyt c. In this study, several experimental methods, including Fourier transform infrared spectroscopy, circular dichroism, ultraviolet-visible absorption spectroscopy, and electron paramagnetic resonance spectroscopy were utilized to investigate the conformational changes of Cyt c induced by MWCNTs.
View Article and Find Full Text PDFUnlabelled: Pulmonary arterial hypertension (PAH) is characterized by functional and structural changes in the pulmonary vasculature, and despite the drug treatment that made significant progress, the prognosis of patients with advanced PH remains extremely poor. In the present study, we investigated the early effect of bone marrow mesenchymal stem cells (BMSCs) on experimental high blood flow-induced PAH model rats and discussed the mechanism. BMSCs were isolated, cultured from bone marrow of Sprague-Dawley (SD) rat.
View Article and Find Full Text PDF