Publications by authors named "Zhao-Zeng Guo"

The role of autophagy in high-salt (HS) intake associated hypertensive left ventricular (LV) remodeling remains unclear. The present study investigated the LV autophagic change and its association with the hypertensive LV remodeling induced by chronic HS intake in spontaneously hypertensive rats (SHR). Wistar Kyoto (WKY) rats and SHR were fed low-salt (LS; 0.

View Article and Find Full Text PDF

It remains unclear if the developmental trajectories of a specific inflammatory biomarker during the acute phase of ST-elevation myocardial infarction (STEMI) provide outcome prediction. By applying latent class growth modeling (LCGM), we identified three distinctive trajectories of CD14++CD16+ monocytes using serial flow cytometry assays from day 1 to day 7 of symptom onset in 96 de novo STEMI patients underwent primary percutaneous coronary intervention. Membership in the high-hump-shaped trajectory (16.

View Article and Find Full Text PDF

The functions of T helper 17 (Th17) and regulatory T (Treg) cells are tightly orchestrated through independent differentiation pathways that are involved in the secretion of pro- and anti-inflammatory cytokines induced by high-salt dietary. However, the role of imbalanced Th17/Treg ratio implicated in inflammation and target organ damage remains elusive. Here, by flow cytometry analysis, we demonstrated that switching to a high-salt diet resulted in decreased Th17 cells and reciprocally increased Treg cells, leading to a decreased Th17/Treg ratio.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the role of different monocyte subsets in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI).
  • It was found that the CD14++CD16+ monocyte subset significantly increased during the acute phase of STEMI and was associated with higher risks of adverse cardiovascular events over a 2-year follow-up.
  • The findings suggest that monitoring these monocyte subsets could help predict cardiovascular outcomes in STEMI patients, indicating the need for further research in this area.
View Article and Find Full Text PDF

To investigate the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) in evaluating human subcutaneous and visceral adipose tissue (AT) oxygenation status, as well as their responses to dietary salt loading/depletion, we enrolled 16 healthy subjects [mean body mass index (BMI): 24.8 ± 2.7 kg/m(2)] to conduct a dietary intervention study, beginning with a 3-day run-in period for usual diet, followed by a 7-day high-salt diet (≥ 15 g NaCl/day) and a 7-day low-salt diet (≤ 5 g NaCl/day).

View Article and Find Full Text PDF

Monocyte subsets and monocyte-platelet aggregates (MPAs) play important role in atherosclerosis and thrombosis. We aimed to determine their changes in patients with unstable angina (UA). In this cross-sectional case-control study, Global Registry of Acute Coronary Events (GRACE) score was determined in 95 UA patients without elevated troponin level.

View Article and Find Full Text PDF

Objective: To investigate the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) in evaluating human visceral adipose tissue (AT) oxygenation induced by salt loading/depletion and its association with changes in circulating monocyte subsets.

Methods: A dietary intervention study was performed in 23 healthy volunteers beginning with a 3-day usual diet followed by a 7-day high-salt diet (≥15 g NaCl/day) and a 7-day low-salt diet (≤5 g NaCl/day). BOLD-MRI was used to evaluate oxygenation in perirenal AT.

View Article and Find Full Text PDF

Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling.

View Article and Find Full Text PDF

The mononuclear phagocyte system, including circulating monocytes and tissue resident macrophages, plays an important role in acute lung injury and fibrosis. The detailed dynamic changes of mononuclear phagocytes in the circulating, lung alveolar and interstitial compartments in bleomycin-induced pulmonary injury model have not been fully characterized. The present study was designed to address this issue and analyzed their relationships with pulmonary pathological evolution after bleomycin challenge.

View Article and Find Full Text PDF

Background: Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis.

View Article and Find Full Text PDF

Background: Monocyte activation and tissue infiltration are quantitatively associated with high-salt intake induced target organ inflammation. We hypothesized that high-salt challenge would induce the expansion of CD14++CD16+ monocytes, one of the three monocyte subsets with a pro-inflammatory phenotype, that is associated with target organ inflammation in humans.

Methodology/principal Findings: A dietary intervention study was performed in 20 healthy volunteers, starting with a 3-day usual diet and followed with a 7-day high-salt diet (≥15 g NaCl/day), and a 7-day low-salt diet (≤5 g NaCl/day).

View Article and Find Full Text PDF