Publications by authors named "Zhao-Yu Ren"

Rb is mainly extracted from brine. The authors studied the matrix effect of chloride brine (NaCl, CaCl2, KCl and MgCl2) on FDFWM (Forward phase-matching degenerate four-wave mixing) of Rb in the graphite furnace. The Rb and other chloride brine concentrations dependences of FDFWM were investigated respectively.

View Article and Find Full Text PDF

The equilibrium geometries, stabilities, and electronic properties of the TaSi(n)+ (n = 1-13, 16) clusters are investigated systematically by using the relativistic density functional method with generalized gradient approximation. The small-sized TaSi(n)+ clusters with slight geometrical adjustments basically keep the frameworks that are analogous to the neutrals while the medium-sized charged clusters significantly deform the neutral geometries, which are confirmed by the calculated AIP and VIP values. Furthermore, the optimized geometries of the charged clusters agree with the experimental results of Hiura and co-workers (Hiura, H.

View Article and Find Full Text PDF

The neutral and charged YbSi(n) (n = 1-6) clusters considering different spin configurations have been systematically investigated by using the relativistic density functional theory with generalized gradient approximation. The total bonding energies, equilibrium geometries, Mulliken populations (MP), Hirshfeld charges (HC), fragmentation energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps are calculated and discussed. The optimized geometries indicate that the most stable YbSi(n) (n = 1-6) clusters keep basically the analogous frameworks as the low-lying Si(n)(+1) clusters, while the charged species deviate from their neutral counterparts, and that the doped Yb tends to occupy the substitutional site of the neutral and charged YbSi(n) isomers.

View Article and Find Full Text PDF

The TaSi(n) (n=1-13) clusters with doublet, quartet, and sextet spin configurations have been systematically investigated by a relativistic density functional theory with the generalized gradient approximation available in Amsterdam density functional program. The total bonding energies, equilibrium geometries, Mulliken populations as well as Hirshfeld charges of TaSi(n) (n=1-13) clusters are calculated and presented. The emphasis on the stabilities and electronic properties is discussed.

View Article and Find Full Text PDF