Publications by authors named "Zhao-Qi Zhu"

In recent years, there has been a growing interest in liquid biopsy due to its non-invasive diagnostic value. Postoperative drainage fluid (PDF) is the fluid exudate from the wound site following lymph node dissection. PDF is regarded as a medical waste with no specific clinical significance.

View Article and Find Full Text PDF

Lymph node metastasis (LNM) is a typical marker in oral squamous cell carcinoma (OSCC) indicating poor prognosis. Pathological examination by artificial image acquisition and analysis, as the main diagnostic method for LNM, often takes a week or longer which may cause great anxiety of the patient and also retard timely treatment. However, there are few efficient fast LNM diagnosis methods in clinical applications currently.

View Article and Find Full Text PDF

The imino group-contained porous organic polytriphenylamine, which originated from diphenylamine and 1,3,5-tris(4-bromophenyl)benzene, was designedly synthesized though Buchwald-Hartwig coupling reaction. The basic properties including morphologies, structure and thermal stability of the resulting POPs were investigated by scanning electron microscope(SEM), thermo gravimeter analysis (TGA), C CP/MAS solid state NMR and Fourier transform infrared spectroscope (FTIR). The pore size distribution of POPs present uniform mesoporous of sizes less than 50nm.

View Article and Find Full Text PDF

Conjugated microporous polymers having thiophene building blocks (SCMPs), which originated from ethynylbenzene monomers with 2,3,5-tribromothiophene, were designedly synthesized through Pd(0)/CuI catalyzed Sonogashira-Hagihara cross-coupling polymerization. The morphologies, structure and physicochemical properties of the as-synthesized products were characterized through scanning electron microscope (SEM), thermogravimeter analysis (TGA), (13)C CP/MAS solid state NMR and Fourier transform infrared spectroscope (FTIR) spectra. Nitrogen sorption-desorption analysis shows that the as-synthesized SCMPs possesses a high specific surface area of 855 m(2) g(-1).

View Article and Find Full Text PDF

Mesoporous graphene with a surface area of 306 m  g was synthesized by employing CaCO microspheres as hard templates. By surface modification with polydimethylsiloxane (PDMS) through chemical vapor deposition, the wettability of as-treated mesoporous graphene can be tailored to be superhydrophobic to water while superoleophilic to oils. The deposition of the low-surface-energy silicon-coating originated from PDMS pyrolysis on porous graphene was confirmed by X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF