A novel chiral sensing platform, 6-O-α-maltosyl-β-cyclodextrin (Mal-βCD)-based film, is proposed for selective electrochemical recognition of tyrosine (Tyr) enantiomers. Black phosphorus nanosheets (BP NSs) and Mal-βCD modified glassy carbon electrode (Mal-βCD/BP NSs/GCE) were prepared by a layer-to-layer drop-casting method, and the platform was easy to fabricate and facile to operate. It is proposed that the amino and hydroxyl groups of the Tyr enantiomers and the chiral hydroxyl groups of Mal-βCD selectively form intermolecular hydrogen bonds to dominate effective chiral recognition.
View Article and Find Full Text PDFIn this study, a novel electrochemical sensor based on self-assembled rod-like lanthanum hydroxide-oxidized multi-walled carbon nanotubes (La(OH)-OxMWCNTs) nanocomposite was developed for sensitive determination of p-nitrophenol (p-NP). The La(OH)-OxMWCNTs nanocomposite with an interpenetrating networks structure was characterized by field emission electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, Raman spectra and X-ray photoelectron spectroscopy (XPS). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were performed to study the electrochemical behaviors of La(OH)-OxMWCNTs modified glassy carbon electrode (La(OH)-OxMWCNTs/GCE).
View Article and Find Full Text PDFA novel electrochemical sensor, platinum nanoparticles/graphene nanoplatelets/multi-walled carbon nanotubes/β-cyclodextrin composite (PtNPs-GNPs-MWCNTs-β-CD) modified carbon glass electrode (GCE), was fabricated and used for the sensitive detection of folic acid (FA). The PtNPs-GNPs-MWCNTs-β-CD nanocomposite was easily prepared with an ultrasound-assisted assembly method, and it was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical behavior of FA at PtNPs-GNPs-MWCNTs-β-CD/GCE was investigated in detail.
View Article and Find Full Text PDFIn this work, a novel manganese dioxide-graphene nanosheets (MnO-GNSs) composite was synthesized by a facile one-step hydrothermal method, in which manganese dioxide (MnO) was fabricated by hydrothermal reduction of KMnO with GNSs. The structure and morphology of MnO-GNSs composite were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and X-ray photoelectron spectroscopy (XPS). A sensitive non-enzymatic electrochemical sensor based on MnO-GNSs composite for the detection of low concentration hydrogen peroxide (HO) was fabricated.
View Article and Find Full Text PDFGraphene nanoplatelets (GNPs), multiwalled carbon nanotube (MWCNTs) and chitosan (CS) were self-assembled by a facile one-step hydrothermal reaction to obtain novel MWCNTs-CS enfolded GNPs (GNPs-MWCNTs-CS) composite. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-vis) absorption spectroscopy and zeta potential analysis were employed to characterize the morphology, surface composition, interaction, surface charge and stability of the GNPs-MWCNTs-CS composite. The electrochemical behaviors of GNPs-MWCNTs-CS composite modified glassy carbon electrode (GNPs-MWCNTs-CS/GCE) were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFIn this study, platinum nanochains (PtNCs), multi-walled carbon nanotubes (MWCNTs) and graphene nanoparticles (GNPs) were assembled together to form a novel nanocomposite by a facile ultrasonic-assisted blending process. The PtNCs-MWCNTs-GNPs nanocomposite was characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The nanocomposite was used for the modification of glass carbon electrode (GCE) and simultaneous determination of dopamine (DA) and ascorbic acid (AA) by differential pulse voltammetry (DPV) and cycle voltammetry (CV).
View Article and Find Full Text PDF