The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.
View Article and Find Full Text PDFThe present study was undertaken to investigate whether isoforms of c-Jun N-terminal kinase (JNK 46 kDa and 54 kDa), one component of the mitogen-activated protein kinase (MAPK) family, might show region-related differential activation patterns in both naïve and pain-experiencing rats. In naïve rats, no significant difference was observed in total expression level of the two JNK isoforms between spinal cord and primary somatosensory cortex (S1 area). However, phosphorylated JNK 46 kDa was normally expressed in the S1 area, but not in the spinal cord, while neither of the two structures contained phosphorylated JNK 54 kDa.
View Article and Find Full Text PDFBackground: Extracellular signal-regulated kinase (ERK), one member of the mitogen-activated protein kinase (MAPK) family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states.
View Article and Find Full Text PDFA Review: A concept of tissue adaptation to hypoxia (i. e. hypoxic preconditioning) was developed and its corresponding animal models were reproduced in 1966s.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
September 2003
Objective: To investigate the distribution of conduction pathways of somtosensory evoked potential (SEP) and motor evoked potential (MEP) in the spinal cord.
Methods: Twenty-five Wistar rats underwent operation to expose the left sciatic nerve and sphenotresia. The sciatic nerve and sensory-motor cortex of 10 rats were stimulated so as to induce MEP and SEP.