Publications by authors named "Zhao-Kui Wan"

The interleukin-1 receptor-activated kinase 4 (IRAK4) belongs to the IRAK family of serine/threonine kinases and plays a central role in the innate immune response. However, the function of IRAK4 in tumor growth and progression remains elusive. Here we sought to determine the enzymatic and scaffolding functions of IRAK4 in activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL).

View Article and Find Full Text PDF

Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies.

View Article and Find Full Text PDF

Cytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling.

View Article and Find Full Text PDF

There has been significant interest in spleen tyrosine kinase (Syk) owing to its role in a number of disease states, including autoimmunity, inflammation, and cancer. Ongoing therapeutic programs have resulted in several compounds that are now in clinical use. Herein we report our optimization of the imidazopyrazine core scaffold of Syk inhibitors through the use of empirical and computational approaches.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoid cortisone to its active form, cortisol. The glucocorticoid receptor (GR) signaling pathway has been linked to the pathophysiology of diabetes and metabolic syndrome. Herein, the structure-activity relationship of a series of piperazine sulfonamide-based 11β-HSD1 inhibitors is described.

View Article and Find Full Text PDF

Extracellular stimulation of the B cell receptor or mast cell FcεRI receptor activates a cascade of protein kinases, ultimately leading to antigenic or inflammation immune responses, respectively. Syk is a soluble kinase responsible for transmission of the receptor activation signal from the membrane to cytosolic targets. Control of Syk function is, therefore, critical to the human antigenic and inflammation immune response, and an inhibitor of Syk could provide therapy for autoimmune or inflammation diseases.

View Article and Find Full Text PDF

Cortisol and the glucocorticoid receptor (GR) signaling pathway has been linked to the development of diabetes and metabolic syndrome. In vivo, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to its active form, cortisol. Existing clinical data have supported 11β-HSD1 as a valid therapeutic target for type 2 diabetes.

View Article and Find Full Text PDF

Diet-induced obese (DIO) mice have been commonly used as an animal model in the efficacy assessment for new drug candidates. Although high-fat feeding has been reported to cause profound physiological changes, including the expression of drug-metabolizing enzymes, limited studies have been reported regarding the effect of obesity/diabetes on pharmacokinetics (PK) in animals. In this study, we investigated PK profiles of three 11 -HSD-1 inhibitors in the DIO mice and compared them to the normal lean mice.

View Article and Find Full Text PDF

Cortisol and the glucocorticoid receptor signaling pathway have been implicated in the development of diabetes and obesity. The reduction of cortisone to cortisol is catalyzed by 11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1). 2,4-Disubsituted benzenesulfonamides were identified as potent inhibitors of both the human and mouse enzymes.

View Article and Find Full Text PDF

The oxidative palladium-catalyzed cross-coupling of pyrimidines containing pyridotriazol-1-yloxy (OPt) as either a urea or an amide functional group with arylboronic acids in the presence of Cs(2)CO(3) in DME containing 0.6-1.0% H(2)O is described for the preparation of heteroaryl ethers.

View Article and Find Full Text PDF

The palladium-catalyzed oxidative coupling of pyrido- and benzotriazol-1-yloxyquinazolines and -thienopyrimidines with aryl boronic acids in the presence of Pd(PPh(3))(4) and Cs(2)CO(3) under oxygen in DME containing 0.4-0.8% water for the preparation of heteroaryl ethers is described.

View Article and Find Full Text PDF

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is the enzyme that converts cortisone to cortisol. Evidence suggests that selective inhibition of 11beta-HSD1 could treat diabetes and metabolic syndrome. Presented herein are the synthesis, structure-activity relationship, and in vivo evaluation of piperazine sulfonamides as 11beta-HSD1 inhibitors.

View Article and Find Full Text PDF

We present an efficient, room temperature procedure for the preparation of 2-amino-1,3,4-oxadiazoles. Oxadiazol-2-ones can be activated for SNAr substitution using phosphonium reagents (e.g.

View Article and Find Full Text PDF

An efficient "one-step" synthesis of cyclic amidines and guanidines has been developed. Treatment of cyclic amides and ureas with benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), base, and nitrogen nucleophiles leads to the formation of the corresponding cyclic amidines and guanidines, typically in good to excellent yields. This method has also been used to prepare heteroaryl ethers and thioethers using phenol and thiophenol nucleophiles.

View Article and Find Full Text PDF

Dimethyl sulfoxide causes alpha,beta-dihalopropanoate derivatives to undergo efficient, selective dehydrohalogenation to form alpha-haloacrylate analogues. A variety of alpha-halo Michael acceptors were prepared in dimethyl sulfoxide under mild, base-free conditions, including the preparation of alpha-bromoacrolein and alpha-chloro- and bromoacrylonitriles. Synthesis of these molecules has been reported in the literature to be difficult.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin receptor pathways and thus an attractive therapeutic target for diabetes and obesity. Starting with a high micromolar lead compound, structure-based optimization of novel PTP1B inhibitors by extension of the molecule from the enzyme active site into the second phosphotyrosine binding site is described. Medicinal chemistry, guided by X-ray complex structure and molecular modeling, has yielded low nanomolar PTP1B inhibitors in an efficient manner.

View Article and Find Full Text PDF

Considerable effort exists within drug discovery to develop novel compounds to improve the underlying metabolic defects in type 2 diabetes. One approach is focused on inhibition of the tyrosine phosphatase, PTP1B, an important negative regulator of both insulin and leptin signaling. Historically, tyrosine phosphatase assays have used either small organic phosphates or, alternatively, phosphorylated peptides from the target proteins themselves.

View Article and Find Full Text PDF

The following account describes our systematic effort to replace one of the carboxylate groups of our diacid thiophene PTP1B inhibitors. Active hits were validated using enzymatic assays before pursuing efforts to improve the potency. Only when the C2 carboxylic acid was replaced with another ionizable functional group was reversible and competitive inhibition retained.

View Article and Find Full Text PDF

A series of monocyclic thiophenes was designed and synthesized as PTP1B inhibitors. Guided by X-ray co-crystal structural information and computational modeling, rational design led to key interactions with Asp48 and improved inhibitory potency against PTP1B.

View Article and Find Full Text PDF

[reaction: see text] An efficient one-step amination of cyclic amides and ureas has been developed. Treatment of cyclic amides and cyclic ureas with BOP in the presence of DBU in various solvents led to the formation of cyclic amidines and cyclic guanidines in good to excellent yields. Concise syntheses of biologically intriguing kinetin and potent kinase inhibitor olomoucin were thus achieved in just one and two steps, respectively.

View Article and Find Full Text PDF

[reaction: see text] A highly facile and efficient one-step synthesis of N6-adenosine and N6-2'-deoxyadenosine derivatives has been developed. Treatment of inosine or 2'-deoxyinosine, without protection of sugar hydroxyl groups, with alkyl or arylamines, in the presence of BOP and DIPEA in DMF, led to the formation of N6-adenosine and N6-2'-deoxyadenosine derivatives in good to excellent yields. Carcinogenic polyaromatic hydrocarbon (PAH) N6-2'-deoxyadenosine adduct 10 and a rare DNA constituent 11 were thus synthesized directly from 2'-deoxyinosine both in 98% yield.

View Article and Find Full Text PDF

The intramolecular inverse-electron-demand Diels-Alder reaction between imidazoles and 1,2,4-triazines linked by a trimethylene tether from the imidazole N1 position to the triazine C3 proceed in excellent yields to produce 1,2,3,4-tetrahydro-1,5-naphthyridines. The reaction proceeds by a cycloaddition with subsequent loss of nitrogen, followed by a presumed stepwise loss of a nitrile. The analogous intramolecular cycloadditions employing a tetramethylene tether also proceeded to give 2,3,4,5-tetrahydro-1H-pyrido[3,2-b]azepines in acceptable yields.

View Article and Find Full Text PDF

Intermolecular inverse electron demand cycloadditions of 2-substituted imidazoles with various 1,2,4-triazines produced both imidazo[4,5-c]pyridines (3-deazapurines) and pyrido[3,2-d]pyrimid-4-ones (8-deazapteridines). The product distribution was controlled by reactant substituents and influenced by reaction temperature. A regioselective method for the preparation of 6-unsubstituted 1,2,4-triazines was also developed.

View Article and Find Full Text PDF