Publications by authors named "Zhao Zhongjun"

Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).

Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.

View Article and Find Full Text PDF

In ambient mass spectrometry, the performance in direct in situ analysis applications has been hindered by the lack of efficient ion-transferring technique between the atmosphere pressure ionization source and the mass analyzer. Building upon the hybrid concept of a stack ring ion guide and multipole ion guide, this study proposes the concept of a reconfigurable twisted dipole ion guide (TDIG) that enables flexible ion transfer between atmosphere and vacuum. Initially, theoretical and numerical studies were conducted to understand the basic ion confining principle of the twisted dipole ion guide, revealing its unique merits in long-distance flexible ion transmission.

View Article and Find Full Text PDF

Several clinical studies have reported promising correlations between propofol concentration in exhaled breath (Ce-pro) and the bispectral index (BIS) in patients, suggesting the potential of exhaled propofol measurement as a non-invasive method for adjusting anesthesia depth. However, these studies are still in the validation phase of instrument effectiveness, often limited by small sample sizes or inappropriate instrument selection, and thus lack convincing results regarding these correlations. In this study, one hundred patients aged 18-65, undergoing elective thyroid surgery under general anesthesia were included.

View Article and Find Full Text PDF

In the analysis of mass spectrometry, the peak identification from the overlapped region is necessary yet difficult. Although various methods have been developed to identify these peaks, especially the continuous wavelet transformation, their applications are still limited and it is hard to deal with the complex overlapped peaks. In this study, a novel peak extraction algorithm of mass spectrometry based on iterative adaptive curve fitting is proposed to address these challenges.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells reprogram their metabolism, and a specific type of protein modification called malonylation is linked to this process and cancer growth, though its role is not fully understood.
  • Research on hepatocellular carcinoma (HCC) showed reduced levels of malonyl-CoA and a general decline in protein malonylation, but increased malonylation of the protein nucleolin (NCL) was found in HCC samples.
  • NCL's malonylation encourages its movement in the cell, allowing it to bind to AKT mRNA and enhance AKT production, which is crucial for HCC cell proliferation; reducing AKT levels effectively slowed down the growth of these cancer cells.
View Article and Find Full Text PDF

Modern atmosphere pressure interface (API) enables high-efficiency coupling between mass analyzers in high vacuum and atmosphere ionization sources such as electrospray ionization (ESI) source. The transient gas flow entering API possesses strong compressibility and turbulent characteristics, which exerts a huge impact on ion transmission. However, the instantaneous nature and vortical morphology of the turbulence in API and its affection in ion transmission were hardly covered in the reported research.

View Article and Find Full Text PDF

The correlation between propofol concentration in exhaled breath () and plasma () has been well-established, but its applicability for estimating the concentration in brain tissues () remains unknown. Given the impracticality of directly sampling human brain tissues, rats are commonly used as a pharmacokinetic model due to their similar drug-metabolizing processes to humans. In this study, we measured,, andin mechanically ventilated rats injected with propofol.

View Article and Find Full Text PDF

Glioma is the most common primary malignant brain tumor in adults and remains an incurable disease at present. Thus, there is an urgent need for progress in finding novel molecular mechanisms that control the progression of glioma which could be used as therapeutic targets for glioma patients. The RNA binding protein cytoplasmic polyadenylate element-binding protein 2 (CPEB2) is involved in the pathogenesis of several tumors.

View Article and Find Full Text PDF

The calculation and analysis of electric fields are indispensable steps in the design of mass spectrometry. In this work, an approach for this calculation was established based on the method of fundamental solution (MFS). It was proved to be much faster and more accurate than the other popular methods, and its optimum parameters were found for the calculation of different quadrupole fields.

View Article and Find Full Text PDF

Layered Mn-based cathode (KMnO) has attracted wide attention for potassium ion batteries (PIBs) because of its high specific capacity and energy density. However, the structure and capacity of KMnO cathode are constantly degraded during the cycling due to the strong Jahn-Teller effect of Mn and huge ionic radius of K. In this work, lithium ion and interlayer water were introduced into Mn layer and K layer in order to suppress the Jahn-Teller effect and expand interlayer spacing, respectively, thus obtaining new types of KMnLiO·0.

View Article and Find Full Text PDF

Solid-state sodium-ion batteries have attracted significant attention due to their rich resources, high safety, and high energy density. However, the lower ionic conductivity and inferior interfacial contact between solid-state electrolytes (SSEs) and electrodes limit their practical applications. Herein, polyvinylideneuoride-co-hexauoropropylene (PVDF-HFP) membrane is selected and a novel sandwiched composite PVDF-HFP/NaZrCeSiPOF/PVDF-HFP (G-NZC0.

View Article and Find Full Text PDF

Ciprofol (HSK 3486, CHO), a novel 2,6-disubstituted phenol derivative similar to propofol, is a new type of intravenous general anaesthetic. We found that the exhaled ciprofol concentration could be measured online by ultraviolet time-of-flight mass spectrometry (UV-TOFMS), which could be used to predict the plasma concentration and anaesthetic effects of ciprofol. In this study, we present the calibration method and validation results of UV-TOFMS for the quantification of ciprofol gas.

View Article and Find Full Text PDF

Background: Exhaled air has been demonstrated as a reliable medium for monitoring propofol concentration. However, online monitoring of exhaled ciprofol have not been reported.

Methods: Thirty-six beagles undergoing mechanical ventilation were divided into 6 groups, including bolus injection of low (Group BL, n = 6), medium (Group BM, n = 6), and high dose of ciprofol (Group BH, n = 6) groups; as well as 1 h continuous infusion of low (Group IL, n = 6), medium (Group IM, n = 6), and high dose of ciprofol (Group IH, n = 6) groups.

View Article and Find Full Text PDF

Foodborne bacteria are widespread contaminated sources of food; hence, the real-time monitoring of pathogenic bacteria in food production is important for the food industry. In this study, a novel rapid detection method based on microbial volatile organic compounds (MVOCs) emitted from foodborne bacteria was established by using ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOF-MS). The results showed obvious differences of MVOCs among the five species of bacteria, and the characteristic MVOCs for each bacterium were selected by a feature selection algorithm.

View Article and Find Full Text PDF

Continuous monitoring for immunosuppressive status, infection and complications are a must for kidney transplantation (KTx) recipients. Traditional monitoring including blood sampling and kidney biopsy, which caused tremendous medical cost and trauma. Therefore, a cheaper and less invasive approach was urgently needed.

View Article and Find Full Text PDF

In this study, we propose a novel ion formation simulation method for electrospray ionization (ESI) and atmosphere pressure interface (API). In this method, not the sheer particle trajectory, but the evolution of droplets and the offspring of gaseous ions are introduced instead. For the first time, the dynamic droplet-to-ion transformation process in the API of ESI-MS is visualized.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields.

View Article and Find Full Text PDF

Exhaled breath and gastric-endoluminal gas (volatile products of diseased tissues) contain a large number of volatile organic compounds, which are valuable for early diagnosis of upper gastrointestinal (UGI) cancer. In this study, exhaled breath and gastric-endoluminal gas of patients with UGI cancer and benign disease were analyzed by gas chromatography-mass spectrometry (GC-MS) and ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOFMS) to construct UGI cancer diagnostic models. Breath samples of 116 UGI cancer and 77 benign disease subjects and gastric-endoluminal gas samples of 114 UGI cancer and 76 benign disease subjects were collected.

View Article and Find Full Text PDF

The P2/O3 biphasic layered oxide (NaMnMO, M: doping elements) is a cathode family with great promise for sodium-ion batteries (SIBs) because of their tunable electrochemical performance and low cost. However, the ultrahigh initial coulombic efficiency (ICE) and inferior cycling performance of P2/O3-NaMnMO need to be improved for practical application. Herein, Ni/Cu co-doped P2/O3-NaMnNiCuO materials are well-designed.

View Article and Find Full Text PDF

Background: Targeting ribosome biogenesis to activate p53 has recently emerged as a therapeutic strategy in human cancer. Among various ribosomal proteins, RPL11 centralizes the nucleolar stress-sensing pathway by binding MDM2, leading to MDM2 inactivation and p53 activation. Therefore, the identification of MDM2-binding RPL11-mimetics would be valuable for anti-cancer therapeutics.

View Article and Find Full Text PDF

Charge transfer reagent ions NO and O were major observed in microwave-induced plasma desorption ionization (MIPDI) source. Ions NO was prosperous in the discharge region while ions O generated in the afterglow region. Fundamental aspects of conditions that controlled MIPDI were addressed here to help understand the specific role of atmospheric components for charge transfer reagent ions formation.

View Article and Find Full Text PDF

Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) has been reported to be dysregulated in a variety of cancers and seems to play paradoxical roles in different cancers. However, the functional roles of CPEB4 in Renal cell carcinoma (RCC) are still unclear. This study aims to explore the role and underlying mechanism of CPEB4 in RCC.

View Article and Find Full Text PDF

The tumor suppressor p53 transactivates the expression of multiple genes to exert its multifaceted functions and ultimately maintains genome stability. Thus, cancer cells develop various mechanisms to diminish p53 expression and bypass the cell cycle checkpoint. In this study, we identified the gene encoding RNA-binding protein cytoplasmic polyadenylation element-binding protein 2 (CPEB2) as a p53 target.

View Article and Find Full Text PDF

Ultrasensitive detection of metallic elements in liquids has attracted considerable attention in fields such as environmental pollution monitoring and drinking water quality control. Hence, it is of great significance to develop a sensitive and simultaneous detection strategy for multiple metal elements in liquid. Laser-induced breakdown spectroscopy (LIBS) technology shows unique advantages because of its simple, rapid, and real-time in situ detection, but the laser energy will be greatly attenuated in the liquids; thus, the sensitivity of LIBS for direct detection of metal elements in liquid samples will decrease sharply.

View Article and Find Full Text PDF

A low-cost and multi-channel smartphone-based spectrometer was developed for LIBS. As the CMOS detector is two-dimensional, simultaneous multichannel detection was achieved by coupling a linear array of fibres for light collection. Thus, besides the atomic information, the spectral images containing the propagation and spatial distribution characters of a laser induced plasma plume could be recorded.

View Article and Find Full Text PDF