Publications by authors named "Zhao Yifang"

Background: To analyze causes of recurrence following radical mandibular resection of ameloblastoma, and to propose surgical variation.

Methods: We conducted a retrospective analysis of patients treated for ameloblastoma from 2012 to 2024, specifically those who underwent radical mandibular resection followed by reconstruction with autologous bone flaps, focusing on cases of recurrence.

Results: Six patients were included in the study, all with primary tumors located in the mandible.

View Article and Find Full Text PDF

Patients with heart failure (HF) are often accompanied by skeletal muscle abnormalities, which can lead to exercise intolerance and compromise daily activities. Irisin, an exercise training (ET) -induced myokine, regulates energy metabolism and skeletal muscle homeostasis. However, the precise role of Irisin in the benefits of ET on inhibiting skeletal muscle atrophy, particularly on endoplasmic reticulum (ER) stress, autophagy, and myogenesis following myocardial infarction (MI) remains unclear.

View Article and Find Full Text PDF

A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies.

View Article and Find Full Text PDF

Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier.

View Article and Find Full Text PDF

Structural adhesives that do not require heating are in high demand in the automotive and electronics industries. However, it remains a challenge to develop robust adhesives that rapidly achieve super adhesion near ambient temperature. Herein, a room-temperature curable, fast-bonding, and super strong epoxy-based structural adhesive was designed from the perspective of cross-scale structure, which lies in threefold pivotal aspects: (i) high branching topology of glycerol carbonate-capped polyurethane (PUGC) increases the kinetics of the ring-opening reaction, contributing to fast crosslinking and the formation of abundant urethane and hydroxyl moieties; (ii) asynchronous crosslinking of epoxy and PUGC synergistically induces phase separation of PUGC within the epoxy resin and the resulting PUGC domains surrounded by interpenetrated shell serves to efficiently toughen the matrix; (iii) abundant dynamic hydrogen bonds including urethane and hydroxyl moieties, along with the elastomeric PUGC domains, dissipate energy of shearing force.

View Article and Find Full Text PDF

The adverse effects of heavy metals have arousing concern in the high geological background area, especially in southwestern Guizhou, China. However, the pollution status of heavy metals are still unclear when exposed to rice and corn in Guizhou province. Therefore, the concentration, pollution level, spatial distribution, and probabilistic health risks of Ni, Cr, Pb, Cu, and Zn are estimated in rice and corn.

View Article and Find Full Text PDF

Objectives: Myocardial infarction (MI) induces inflammatory response and oxidative stress in the brain, which would be one of the causes of cardiac dysfunction. Exercise training is viewed as a feasible strategy to improve cardiac function of the infarcted heart. The aim of this study was to investigate whether exercise training could alleviate MI-induced prefrontal lobe injury via activating Sestrin2 (SESN2) signaling and inhibiting oxidative stress and inflammation.

View Article and Find Full Text PDF

Objective: Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs.

Subjects And Methods: Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs.

View Article and Find Full Text PDF

In the karst areas of southwest China, soil fluoride levels are higher than in China (478 mg kg) and world (200 mg kg). High levels of F in the environment might pose a health risk to humans. The comprehensive exposure risk must be studied in this area.

View Article and Find Full Text PDF

Bijie is located at a typical karst landform of Southwestern Guizhou, which presented high geological background values of potentially toxic elements (PTEs). Recently, whether PTE of wheat in Bijie is harmful to human health has aroused people's concern. To this end, the objectives of this study are to determine the concentrations of PTE [chromium (Cr), nickel (Ni), arsenic (As), lead (Pb), cadmium (Cd), and fluorine (F)] in wheat grains, identify contaminant sources, and evaluate the probabilistic risks to human beings.

View Article and Find Full Text PDF

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells.

View Article and Find Full Text PDF

Besides the adjustment of the active centres, the precisely designed microstructures of the carbon hosts also play a significant role in improving the battery performance. Herein, MOF-derived FeO@NCs were prepared through a molten salt-assisted calcination method at different carbonization temperatures. Compared with the materials obtained at 700 °C, LK450 calcined at a lower temperature of 450 °C maintains suitable pore sizes and more N-doping and exhibits excellent Li-ion transport performance.

View Article and Find Full Text PDF

Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated.

View Article and Find Full Text PDF

Copper selenide is widely considered to be a promising candidate for high-performance flexible thermoelectrics; however, most of the reported values of copper selenides are unsatisfactory at a relatively low temperature range. Herein, we utilized some wet chemical methods to synthesize a series of copper selenides. XRD, SEM and TEM characterizations revealed that CuSe, CuSe and Cu Se were prepared successfully and possessed different morphologies and sizes.

View Article and Find Full Text PDF

Dielectric loss is an important way to eliminate electromagnetic pollution. In order to achieve high dielectric loss, a graphene film reduced graphene oxide-N doped graphene (rGO-NG) was constructed from graphene oxide-Ni@polydopamine (GO-Ni@PDA) via thesynthesis of hollow graphene spheres between graphene sheets. Thiswas achieved by means of electrostatic self-assembly and metal-catalyzed crystallization.

View Article and Find Full Text PDF

Qiao , found on (Urticaceae) in China, is described and illustrated. Chakrabarti & Quednau is also a new generic record for China.

View Article and Find Full Text PDF

Charge separation plays a crucial role in regulating photochemical properties and therefore warrants consideration in designing photocatalysts. Metal-organic frameworks (MOFs) are emerging as promising candidates for heterogeneous photocatalysis due to their structural designability and tunability of photon absorption. Herein, we report the design of a pyrazole-benzothiadiazole-pyrazole organic molecule bearing a donor-acceptor-donor conjugated π-system for fast charge separation.

View Article and Find Full Text PDF

Structural delamination of bulk layered metal-organic frameworks (MOFs) remains a great challenge, largely owing to a lack of general synthetic strategies. Here, we reported a simple solvent-free intercalation strategy for the delamination of rare-earth-based MOF (RE-MOF) with a topology structure of MIL-78 by tuning the chain length of quaternary ammonium salts. Four types of quaternary ammonium salts, involving tetraethylammonium bromide (TEAB), tetrapropylammonium bromide (TPAB), tetrabutylammonium bromide (TBAB), and hexadecyl trimethyl ammonium bromide (CTAB) were introduced to investigate their intercalation capabilities.

View Article and Find Full Text PDF

Scanning transmission electron microscopy (STEM) is suitable for visualizing the inside of a relatively thick specimen than the conventional transmission electron microscopy, whose resolution is limited by the chromatic aberration of image forming lenses, and thus, the STEM mode has been employed frequently for computed electron tomography based three-dimensional (3D) structural characterization and combined with analytical methods such as annular dark field imaging or spectroscopies. However, the image quality of STEM is severely suffered by noise or artifacts especially when rapid imaging, in the order of millisecond per frame or faster, is pursued. Here we demonstrate a deep-learning-assisted rapid STEM tomography, which visualizes 3D dislocation arrangement only within five-second acquisition of all the tilt-series images even in a 300 nm thick steel specimen.

View Article and Find Full Text PDF

The chemisorption and catalysis of lithium polysulfides (LiPSs) are effective strategies to suppress the shuttle effect in lithium-sulfur (Li-S) batteries. Herein, multisize CoS particles intercalated/coated-montmorillonite (MMT) as an efficient sulfur host is synthesized. As expected, the obtained S/CoS @MMT cathode achieves an absorption-catalysis synergistic effect through the polar MMT aluminosilicate sheets and the well-dispersed nano-micron CoS particles.

View Article and Find Full Text PDF
Article Synopsis
  • Circulating small extracellular vesicles (sEVs) are nanosized membrane structures that transmit bioactive molecules between cells, but traditional methods for studying them in vivo involve complex procedures that can alter their natural properties.
  • The researchers introduced an in situ biotinylation method that labels sEVs directly in the bloodstream, allowing for more accurate evaluation of their behavior without the need for isolation and reinfusion.
  • Their findings revealed that sEVs have varying lifetimes based on their source, with erythrocyte-derived sEVs lasting the longest, and suggested that this new labeling strategy may enhance the understanding and use of sEVs in medical applications as biomarkers and therapeutic vectors.
View Article and Find Full Text PDF

Rigid molecular sieving materials work well for small molecules with the complete exclusion of large ones, and molecules with matching physiochemical properties may be separated using dynamic molecular sieving materials. Metal-organic frameworks (MOFs) are known for their precise control of structures and functions on a molecular level. However, the rational design of local flexibility in the MOF framework for dynamic molecular sieving remains difficult and challenging.

View Article and Find Full Text PDF

The strategy of aggregation-induced emission enhancement (AIEE) has been proven to be efficient in wide areas and has recently been adopted in the field of metal nanoclusters. However, the relationship between atomically precise clusters and AIEE is still unclear. Herein, we have successfully obtained two few-atom heterometallic gold-silver hepta-/decanuclear clusters, denoted and , and determined their structures by X-ray diffraction and mass spectrometry.

View Article and Find Full Text PDF