Publications by authors named "Zhao Yanfang"

Background: Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.

View Article and Find Full Text PDF

Background: Miscarriage is a common complication of pregnancy, and its underlying pathophysiologic mechanisms remains unclear. The platelet-to-lymphocyte ratio (PLR), a prothrombotic and inflammatory marker, has been controversially discussed as a potential predictor of miscarriage. This systematic review and meta-analysis aimed to assess the predictive significance of the PLR in women with miscarriage compared to healthy pregnancies.

View Article and Find Full Text PDF

Background: Breast cancer is one of the most common malignancies among women, and its development involves a variety of complex molecular mechanisms. Extracellular signal-regulated kinase (ERK) and Chromogranin B (CHGB) are known to play key roles in various cancers. This study aims to explore the impact of the ERK/CHGB pathway in a chronic stress environment simulated by salbutamol on the development of breast cancer.

View Article and Find Full Text PDF

Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs.

View Article and Find Full Text PDF

By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into the effects of strategies such as single-acceptor doping, double-acceptor co-doping, and donor-acceptor co-doping on the properties of g-ZnO. This study found that single-acceptor doping with Li and Ag elements can form shallow acceptor levels, thereby facilitating p-type conductivity.

View Article and Find Full Text PDF

Physical spatiotemporal characteristics of cellular cortex dominate cell functions and even determine cell fate. The cellular cortex is able to reorganize to a dynamic steady status with changed stiffnesses once stimulated, and thus alter the physiological and pathological activities of almost all types of cells. TGF-β2, a potent pleiotropic growth factor, plays important roles in cartilage development, endochondral ossification, and cartilage diseases.

View Article and Find Full Text PDF

Ferroptosis, as an iron-dependent cell death mediated by lipid peroxidation, has sparked great interest in the tumor research community. Targeting ferroptosis has been proven to be a new therapeutic opportunity for inhibiting tumor growth. However, it is challenging to precisely characterize the metabolic pattern of ferroptosis in heterogeneous tumors and further identify ferroptosis-associated metabolic vulnerabilities for tumor treatment.

View Article and Find Full Text PDF

Podocytes can undergo PANoptosis (apoptosis, pyroptosis, and necroptosis). Diabetic kidney disease (DKD) is the leading cause of kidney failure, and podocyte loss is a major event leading to the progression of DKD. Here, we compared single cell RNA sequencing (scRNA-seq) data between three normal and three DKD human kidney samples and found a significant increase of TNFSF10 and TNFRSF10B expression in podocytes of patients with DKD.

View Article and Find Full Text PDF
Article Synopsis
  • The article addresses the challenge of image positioning accuracy in high-resolution cameras caused by environmental disturbances and line-of-sight variations during operation.
  • It proposes a real-time monitoring system (LoS Var RTMS) that integrates a high-resolution camera with a star tracker and utilizes laser technology to improve calibration and accuracy.
  • To counteract issues with stray light affecting the system's performance, a new analysis method is introduced alongside a polarization filtering mechanism designed to minimize the impact of stray light, enhancing the overall effectiveness of the monitoring system.
View Article and Find Full Text PDF

Plastic pollution is widely present in terrestrial and aquatic ecosystems, and microplastics (MPs) can be detected in organisms. detection methods for MPs in organisms have attracted widespread attention. Traditional imaging characterization methods of MPs, including stereo microscopes and fluorescence microscopy, are typically used to image artificially added microsphere standards under laboratory conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The immune response triggered by bacteria is crucial in the development of periodontal diseases, with specific virulence factors initiating inflammation.
  • Outer membrane vesicles (OMVs) from the bacteria Fusobacterium nucleatum have been found to worsen periodontitis by intensifying inflammation and bone loss, similar to the bacteria itself.
  • These OMVs can independently lead to periodontitis by interfering with human periodontal stem cells, activating inflammatory processes, and causing damage to the supporting structures of teeth.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating a new SERS substrate using a hybrid of gold nanoparticles (Au NPs) and crystalline carbon nitride nano-walls (CCN NWs) on an aluminum sheet to detect benzidine residue, which poses risks to food safety and the environment.
  • The novel Au/CCN NWs/Al substrate demonstrates rapid enrichment of benzidine within 120 seconds and achieves high sensitivity, indicating a significant enhancement factor (1.76×10) for detecting this contaminant.
  • Overall, the hybrid substrate exhibits excellent reproducibility (RSD = 9.11%) and accuracy (recovery rate of 95.55%-109.46%), showcasing its potential for real-world applications in monitoring benz
View Article and Find Full Text PDF

The repair and reconstruction of large-scale bone defects face enormous challenges because of the failure to reconstruct the osteo-vascularization network. Herein, a near-infrared (NIR) light-responsive hydrogel system is reported to achieve programmed tissue repair and regeneration through the synergetic effects of on-demand drug delivery and mild heat stimulation. The spatiotemporal hydrogel system (HG/MPa) composed of polydopamine-coated TiCT MXene (MP) nanosheets decorated with acidic fibroblast growth factor (aFGF, a potent angiogenic drug) and hydroxypropyl chitosan/gelatin (HG) hydrogel is developed to orchestrate the reconstruction of the osteo-vascularization network and boost bone regeneration.

View Article and Find Full Text PDF

LpxC inhibitors are new-type antibacterial agents developed in the last twenty years, mainly against Gram-negative bacteria infections. To enable the development of novel LpxC inhibitors with potent antibacterial activities, several series of compounds were designed and synthesized and their antibacterial activities were evaluated against E. coli ATCC25922, P.

View Article and Find Full Text PDF
Article Synopsis
  • * A new material, MIL-101-SONa, was developed to effectively extract NNIs from environmental samples, utilizing modifications to improve interaction and electrostatic attraction.
  • * The method using MIL-101-SONa demonstrated impressive detection capabilities with low thresholds and high accuracy, successfully identifying NNI levels in various beverages, indicating its potential for practical use in monitoring NNI contamination.
View Article and Find Full Text PDF

Background: Environmental endocrine disruptors (EEDs) are a class of new pollutants that are diffusely used in the medical industry and animal husbandry. In view of toxicity concerns, elevated levels of EEDs in the environment and food, which cause potential harm to human beings and ecosystems, must be monitored. Determination of EEDs contaminants to ensure environment and food safety has became a major concern worldwide, it is also a challenging task because of their trace level and probable matrices interference.

View Article and Find Full Text PDF

The development of valid chemical enhancement strategy with charge transfer (CT) for semiconductors has great scientific significance in surface-enhanced Raman scattering (SERS) technology. Herein, a phosphorus doped crystalline/amorphous polymeric carbon nitride (PCPCN) is fabricated by a facile molten salt method, and is employed as a SERS substrate for the first time. Upon the synergies of phosphatization and molten salt etching, PCPCN owns a cascaded internal electric field (IEF) due to the formation of p-n homojunction (interface-IEF) and crystalline/amorphous homojunction (bulk-IEF).

View Article and Find Full Text PDF

The thermal-responsive magnetic molecularly imprinted polymer (TrMMIP) sorbent was synthesized by surface imprinting method, and then used for magnetic solid-phase extraction (MSPE) and subsequent integrated into the ion source for elution and ionization. The shrinking-strength states change of the thermal-responsive polymer chain on TrMMIP alters the wettability of the sorbent when the working temperature crosses the lower critical solution temperature (LCST) of the polymer, and thus affects its behavior of in the extraction and clean-up process. The targeted analytes could be effectively extracted due to the high selectivity of MIPs and well dispersibility of polymer chain under the open state.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a multifactorial and complicated metabolic disorder, is a growing public health problem. Numerous studies have indicated that bioactive compounds from herbal medicine have beneficial effects on T2DM prevention and treatment, owing to their numerous biological properties. Curcumin, the major curcuminoid of turmeric, is one of the most studied bioactive components of herbal supplements, and has a variety of biological activities.

View Article and Find Full Text PDF

Flexible strain sensors have a wide range of applications in the field of health monitoring of seismic isolation bearings. However, the nonmonotonic response with shoulder peaks limits their application in practical engineering. Here we eliminate the shoulder peak phenomenon during the resistive-strain response by adjusting the dispersion of conductive nanofillers.

View Article and Find Full Text PDF

HPK1 also referred to as MAP4K1, belongs to the category of mammalian STE20-like protein serine/threonine kinases. Its physiological function involves the down-regulation of T cell signals, and it is regarded as a new immune checkpoint of tumor immunology. In this study, we commenced our investigation with the hit compounds, focusing the efforts on structural optimization and SAR exploration to identify a novel class of 2,4-diaminopyrimidine HPK1 inhibitors.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S.

View Article and Find Full Text PDF

Background: Although tamoxifen (TMX) belongs to selective estrogen receptor modulators (SERMs) and selectively binds to estrogen receptors, it affects other estrogen-producing tissues due to passive diffusion and non-differentiation of normal and cancerous cells and leads to side effects.

Methods: The problems expressed about tamoxifen (TMX) encouraged us to design a new drug delivery system based on magnetic nanoparticles (MNPs) to simultaneously target two receptors on cancer cells through folic acid (FA) and hyaluronic acid (HA) groups. The mediator of binding of two targeting agents to MNPs is a polymer linker, including dopamine, polyethylene glycol, and terminal amine (DPN).

View Article and Find Full Text PDF

The traceability of geographic origin is essential for guaranteeing the quality, safety, and protection of oyster brands. However, the current outcomes of traceability lack credibility as they do not adequately explain the model's predictions. Consequently, we conducted a study to evaluate the efficacy of utilizing explainable machine learning combined with mineral elements analysis.

View Article and Find Full Text PDF

This study aims to investigate the component variations and spatial distribution of ginsenosides in Panax quinquefolium roots during repeated steaming and drying. Ultra performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to identify the ginsenosides in the root extract. Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) was employed to visualize the spatial distribution and spatiotemporal changes of prototype ginsenosides and metabolites in P.

View Article and Find Full Text PDF