Adventitious roots (ARs) have an unmatched status in plant growth and metabolism due to the degeneration of primary roots in lotuses. In the present study, we sought to assess the effect of sucrose on ARs formation and observed that lignin synthesis was involved in ARs development. We found that the lignification degree of the ARs primordium was weaker in plants treated with 20 g/L sucrose than in 50 g/L sucrose treatment and control plants.
View Article and Find Full Text PDFBackground: Lotus is an aquatic horticultural crop that is widely cultivated in most regions of China and is used as an important off-season vegetable. The principal root of lotus is degenerated, and adventitious roots (ARs) are irreplaceable for plant growth. We found that no ARs formed under darkness and that exposure to high-intensity light significantly promoted the development of root primordia.
View Article and Find Full Text PDFBackground: In China, lotus is an important cultivated crop with multiple applications in ornaments, food, and environmental purification. Adventitious roots (ARs), a secondary root is necessary for the uptake of nutrition and water as the lotus principle root is underdeveloped. Therefore, AR formation in seedlings is very important for lotus breeding due to its effect on plant early growth.
View Article and Find Full Text PDF