Hypoxia inducible factor-1 (HIF-1) has been considered as a critical transcriptional factor in response to hypoxia. It can increase P-glycoprotein (P-Gp) thus generating the resistant effect to chemotherapy. At present, the mechanism regulating HIF-1α is still not fully clear in hypoxic tumor cells.
View Article and Find Full Text PDFThis study is to evaluate the cytotoxicity of mitomycin C (MMC) and its analogue 5-(aziridin-1-yl)-3-hydroxymethyl-1-methylindole-4,7-dione (629) as well as the effect of transfection of constitutive androstane receptor (CAR) on their biological effects. HepG2 cells were transfected with the plasmids mCAR1/pCR3 mediated by liposome. Vector pCR3 was used as control.
View Article and Find Full Text PDFAim: To examine the effect of inducible nitric oxide synthase (iNOS) on tumour cells chemosensitivity to mitomycin C (MMC) analogue 5-aziridinyl-3-hydroxyl-1-methylindole-4,7-dione (629) in vitro, and elucidate the possible role of iNOS in the metabolism of 629.
Methods: Human sarcoma cells (HT1080) and its iNOS gene transfected clones (iNOS9, iNOS12) were exposed to 629 at concentrations of 1 nmol x L(-1) - 100 micromol x L(-1). 3-[4, 5-Dimethylthiazol-2-yl] -2,5-diphenyltetrazolium bromide (MTT) assay, agarose electrophoresis and flow cytometric analysis were used to determine cell sensitivity, deoxyribonucleic acid (DNA) damage and the change of cell cycle in above process, respectively.
Overexpression and activation of HER-2/neu (also known as c-erbB-2), a proto-oncogene, was found in about 30% of human breast cancers, promoting cancer growth and making cancer cells resistant to chemo- and radio-therapy. Wild-type p53 is crucial in regulating cell growth and apoptosis and is found to be mutated or deleted in 60-70% of human cancers. And some cancers with a wild-type p53 do not have normal p53 function, suggesting that it is implicated in a complex process regulated by many factors.
View Article and Find Full Text PDF