Publications by authors named "Zhao Liang Li"

Widespread autumn cooling occurred in the northern hemisphere (NH) during the period 2004-2018, primarily due to the strengthening of the Pacific Decadal Oscillation and Siberian High. Yet, while there has been considerable focus on the warming impacts, the effects of natural cooling on autumn leaf senescence and plant productivity have been largely overlooked. This gap in knowledge hinders our understanding of how vegetation adapts and acclimates to complex climate change.

View Article and Find Full Text PDF

Objective: To investigate the therapeutic effect of intra-arterial microguidewire electrocoagulation on intracranial vascular diseases.

Methods: Data from 10 patients with cerebral aneurysms between May 2018 and September 2022 were analysed. Patients were treated with endovascular coil embolisation and microguidewire electrocoagulation.

View Article and Find Full Text PDF
Article Synopsis
  • Land cover changes (LCCs) significantly impact local surface temperatures, with a global average temperature increase of 0.08 K from 2006 to 2015, varying by latitude.
  • Cropland expansion mainly contributed to cooling effects in northern mid-latitudes, while forest-related LCCs were more likely to cause warming, highlighting an imbalance in their impacts.
  • This research underscores the importance of understanding realistic LCCs for developing effective land management and climate adaptation strategies, as warming LCCs tend to be stronger and more frequent compared to cooling ones.
View Article and Find Full Text PDF

The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.

View Article and Find Full Text PDF

Objectives: This study aimed to discuss the clinical characteristics and emergent endovascular treatment of carotid cavernous fistulas presenting as intracranial hemorrhage.

Methods: The clinical data of five patients with carotid cavernous fistulas, who presented with intracranial hemorrhage and who were admitted from January 2010 to April 2017, were analyzed retrospectively, and the diagnoses were confirmed by head computed tomography. Digital subtraction angiography was carried out in all the patients for the diagnosis and further emergent endovascular procedures.

View Article and Find Full Text PDF

Vegetation change can alter surface energy balance and subsequently affect the local climate. This biophysical impact has been well studied for forestation cases, but the sign and magnitude for persistent earth greening remain controversial. Based on long-term remote sensing observations, we quantify the unidirectional impact of vegetation greening on radiometric surface temperature over 2001-2018.

View Article and Find Full Text PDF

Background: Early prediction of treatment response is crucial for the optimal treatment of advanced breast cancer. We aimed to explore whether monitoring early changes in plasma human epidermal growth factor receptor 2 (HER2) levels using digital PCR (dPCR) could predict the treatment response in advanced breast cancer.

Methods: This was a multicenter, prospective, noninterventional clinical study of patients with advanced breast cancer.

View Article and Find Full Text PDF

Objectives: The endoscopic bilateral stent-in-stent (SIS) deployment is a challenging procedure. Such difficulty is mainly caused by sticking of the tip of the delivery sheath into the self-expandable metal stents (SEMSs) mesh, requiring an additional dilating procedure. Herein, we assessed the clinical results of using cross-wired metal stent for endoscopic bilateral SIS deployment (BONASTENT M-Hilar) in patients with malignant hilar biliary obstruction (MHBO) in both high-volume and non-high-volume centers.

View Article and Find Full Text PDF

Vegetation phenology is a sensitive indicator of climate change and vegetation growth. In the present study, two phenological phases with respect to vegetation growth at the initial and mature stages, namely, the start of the season (SOS) and the peak of the season (POS), were estimated from a satellite-derived normalized difference vegetation index (NDVI) dataset over a long-term period of 32 years (1983 to 2014) and used to explore their responses to atmospheric variables, including air temperature, precipitation, solar radiation, wind speed and soil moisture. First, the forward feature selection method was used to determine whether each independent variable was linear or nonlinear to the SOS and POS.

View Article and Find Full Text PDF

A series of algorithms for satellite retrievals of sun-induced chlorophyll fluorescence (SIF) have been developed and applied to different sensors. However, research on SIF retrieval using hyperspectral data is performed in narrow spectral windows, assuming that SIF remains constant. In this paper, based on the singular vector decomposition (SVD) technique, we present an approach for retrieving SIF, which can be applied to remotely sensed data with ultra-high spectral resolution and in a broad spectral window without assuming that the SIF remains constant.

View Article and Find Full Text PDF

Lagged precipitation effect explains a large proportion of annual aboveground net primary productivity in some dryland ecosystems. Using satellite-derived plant productivity and precipitation datasets in the Northern Hemisphere drylands during 2000-2018, we identify 1111 pixels mainly located in the Tibetan Plateau, the western US, and Kazakhstan where productivities are significantly correlated with previous-year precipitation (hereafter, the lagged type). Differences in climatic and edaphic factors between the lagged and unlagged (pixels where productivities are not correlated with previous-year precipitation) types are evaluated.

View Article and Find Full Text PDF

Background: Self-expandable metal stents (SEMSs) are widely used in patients with distal malignant biliary obstruction. A SEMS that can avoid occlusion as much as possible is desirable.

Aims: The aim of this multicenter single-arm prospective study was to assess the clinical effectiveness and safety of a novel fully covered braided SEMS.

View Article and Find Full Text PDF

The linear spectral emissivity constraint (LSEC) method has been proposed to separate temperature and emissivity in hyperspectral thermal infrared data with an assumption that land surface emissivity (LSE) can be described by an equal interval piecewise linear function. This paper combines a pre-estimate shape method with the LSEC method to provide an initial-shape estimation of LSE which will create a new piecewise scheme for land surface temperature (LST) and LSE separation. This new scheme is designated as the pre-estimate shape (PES)-LSEC method.

View Article and Find Full Text PDF

A new compound(Z)-6-hydroxy-4-methoxy-5,7-dimethylaurone was isolated from Cleistocalyx operculatus flower buds. Its structure was identified by spectroscopic data including MS, ¹H-NMR, ¹³C-NMR HSQC and HMBC. A known compound, 2',4'-dihydroxy-6'-methoxy-3'5'-dimethylchalcone (DMC), was also isolated and identified,and used as material to synthesize (Z)-6-hydroxy-4-methoxy-5,7-dimethylaurone.

View Article and Find Full Text PDF

Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty.

View Article and Find Full Text PDF

As an important component in the surface radiation budget, surface upwelling longwave radiation (SULR) is an outcome of the land surface energy exchange and mainly represents the capability of thermal radiation from the surface of the Earth. Existing satellite-derived SULR products are too coarse to support high-resolution numerical models, and their accuracy needs to be improved. In this study, an equivalent temperature is introduced through which a "split-window" atmospheric correction algorithm is developed for MODIS data to estimate the instantaneous clear-sky SULR.

View Article and Find Full Text PDF

An analysis of the atmospheric impact on ground brightness temperature (Tg) is performed for numerous land surface types at commonly-used frequencies (i.e., 1.

View Article and Find Full Text PDF

In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation.

View Article and Find Full Text PDF

Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration.

View Article and Find Full Text PDF

In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of COD(Cr) and NH₃N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter.

View Article and Find Full Text PDF

Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands.

View Article and Find Full Text PDF

Snow can directly affect the surface energy balance and climate change and has a significant impact on human life and production. It is therefore of great significance to study the fresh snow emission spectroscopy properties by using the thermal infrared Polarization technique. This can provide a basis for quantitative thermal infrared remote sensing monitoring of snow as well as a deeper understanding of global warming and appropriate countermeasures.

View Article and Find Full Text PDF

The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days.

View Article and Find Full Text PDF

Ding-Zhi-Xiao-Wan (DZXW) is a traditional Chinese medicine widely used for treating depression. To clarify the bioactive constituents of DZXW, a new rapid ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS(E)) method was established in this study, with the whole extract of the formula separated into multiple components to facilitate the analytical process. In total, 97 compounds were detected and 88 were identified in DZXW.

View Article and Find Full Text PDF