Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.
View Article and Find Full Text PDFThe proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFDissolved organic matter (DOM) in natural waters can regulate the behaviors and fates of aquatic contaminants, while the specific effects on contaminant attenuation are highly dependent on its inherent properties [e.g., molecular weights (MW) and types].
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
The rising of MXenes not only enriches the two-dimensional material family but also brings more opportunities for diverse functional applications. However, the controllable synthesis of MXenes is still unsatisfied via the common liquid-solid etching route, considering the unsolved problems like safety risk, time cost and easy oxidation. Herein, a facile yet efficient gas-solid (G-S) reaction methodology is devised by using hydrogen fluoride gas derived from fluorinated organics as the MAX etchant toward high-efficiency fabrication of multiple MXenes and their derivatives.
View Article and Find Full Text PDFObjective: The purpose of this experiment was to explore the effect of adding cellulase and laccase on fermentation quality and microbial community in mixed silage of corn stover and wet brewer's grains. Try to a new approach for the proper preservation and utilization of the agro-industrial by-products (corn stover and wet brewer's grains).
Methods: The experiment was divided into four groups: CK (control), C (cellulase, 120 U/g fresh matter [FM]), L (laccase, 50 U/g FM), CL (cellulase 120 U/g FW and laccase 50 U/g FM), and the chemical composition, fermentation quality, microbial population and microbial community in mixed silage of corn stover and wet brewer's grains after 30 day's fermentation were determined.
Heterogeneous hydrogenation is surging as a promising strategy for selective removal of water pollutants, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, we enhanced the mass transfer and the utilization of hydrogen reagent through construction of a two-phase flow-through membrane reaction device (Pd/SiC-MR). Pd/SiC-MR displays high efficiency and selectivity toward removal of multiple pollutants.
View Article and Find Full Text PDFStrong metal-support interaction (SMSI) plays a vital role in tuning the geometric and electronic structures of metal species. Generally, a high-temperature treatment (>500 °C) in reducing atmosphere is required for constructing SMSI, which may induce the sintering of metal species. Herein, we use molten salts as the reaction media to trigger the formation of high-intensity SMSI at reduced temperatures.
View Article and Find Full Text PDFThe development of efficient methods for the direct introduction of a methyl group into molecules is becoming increasingly important. Herein, the β-methylation of primary alcohols with methanol has been accomplished under environmentally benign conditions using [Cp*Ir(2,2'-bpyO)(HO)] as a catalyst. It was found that functional groups in the ligand are crucially important for the activity of the iridium complex.
View Article and Find Full Text PDFThe purple nonsulfur bacteria, Rhodospirillum rubrum, is recognized as a potential strain for PHAs bioindustrial processes since they can assimilate a broad range of carbon sources, such as syngas, to allow reduction of the production costs. In this study, we comparatively analyzed the biomass and PHA formation behaviors of R. rubrum under 100% CO and 50% CO gas atmosphere and found that pure CO promoted the PHA synthesis (PHA content up to 23.
View Article and Find Full Text PDFFatal dendritic growth in lithium metal batteries is closely related to the composition and thickness of the modified separator. Herein, an ultrathin nanocoating composed of monolayer montmorillonite (MMT), poly(vinyl alcohol) (PVA) on a polypropylene separator is prepared. The MMT was exfoliated into monolayers (only 0.
View Article and Find Full Text PDFThe residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type sp. Za in environmental remediation.
View Article and Find Full Text PDFStrong metal-support interaction (SMSI) is crucial to modulating the nature of metal species, yet the SMSI behaviors of sub-nanometer metal clusters remain unknown due to the difficulties in constructing SMSI at cluster scale. Herein, we achieve the successful construction of the SMSI between Pt clusters and amorphous TiO nanosheets by vacuum annealing, which requires a relatively low temperature that avoids the aggregation of small clusters. In situ scanning transmission electron microscopy observation is employed to explore the SMSI behaviors, and the results reveal the dynamic rearrangement of Pt atoms upon annealing for the first time.
View Article and Find Full Text PDFDeveloping efficient and robust electrocatalysts toward the oxygen evolution reaction (OER) is critical for proton exchange membrane water electrolysis (PEMWE). RuO possesses intrinsically high OER activity, but the concurrent electrochemical dissolution leads to rapid deactivation. Here a unique RuO catalyst containing metallic Ru─Ru interactions (m-RuO) is reported, which maintains stability in practical PEMWE for 100 h at 60 °C and 1 A cm.
View Article and Find Full Text PDFThe tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage.
View Article and Find Full Text PDFRecent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of HO. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial.
View Article and Find Full Text PDFA general method for the hydrogenation of quinones to hydroquinones under atmospheric pressure has been developed. In the presence of [Cp*Ir(2,2'-bpyO)(HO)] (0.5-1 mol %), a range of products were obtained in high yields.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
Diluted magnetic semiconductors (DMSs) with tunable ferromagnetism are among the most promising materials for fabricating spintronic devices. Some DMS systems have sizeable magnetoresistances that can further extend their applications. Here, we report a new DMS Rb(ZnLiMn)As with a quasi-two-dimensional structure showing sizeable anisotropies in its ferromagnetism and transverse magnetoresistance (MR).
View Article and Find Full Text PDFBackground: Cerebral palsy (CP) is a unique neurological disorder which adversely affects motion. Cytokines and gut microbial composition contribute to CP and other diseases, such as reproductive tract inflammation and bone loss. Importantly, () reduces the degree of inflammation and improves overall health status.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
NASICON-type LiAlTi(PO) (LATP) is a widely used solid electrolyte in solid-state lithium batteries, owing to its excellent chemical stability against moisture and high total ionic conductivity. However, traditionally, densification of LATP has been achieved through a high-temperature sintering process (approximately 1000 °C) owing to its poor sinterability. Herein, we report a facile synthesis route to obtain highly sinterable LATP solid electrolyte using tetrabutyl titanate (CHOTi) as the titanium source and incorporating the traditional solid-state reaction method.
View Article and Find Full Text PDFPhyllosilicates-based nanomaterials, particularly iron-rich vermiculite (VMT), have wide applications in biomedicine. However, the lack of effective methods to activate the functional layer covered by the external inert layer limits their future applications. Herein, we report a mineral phase reconfiguration strategy to prepare novel nanozymes by a molten salt method.
View Article and Find Full Text PDF