In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors.
View Article and Find Full Text PDFOxygen (O) plays a critical role during photodynamic therapy (PDT), however, hypoxia is quite common in most solid tumors, which limits the PDT efficacy and promotes the tumor aggression. Here, a safe and multifunctional oxygen-evolving nanoplatform is costructured to overcome this problem. It is composed of a prussian blue (PB) core and chlorin e6 (Ce6) anchored periodic mesoporous organosilica (PMO) shell (denoted as PB@PMO-Ce6).
View Article and Find Full Text PDFHerein, we demonstrate a coating-etching strategy to directly synthesize hollow Prussian blue (PB) nanocubes with well-dispersed Ag nanoparticles (denoted as Ag-HPB). The method is accomplished by introduction of PB precursors, KFe(CN) and Fe into a reaction system containing AgNO and ascorbic acid, in which a series reactions contain formation of Ag nanoparticles, coating of PB on the nanoparticles, and diffusion of Ag into the PB frameworks occur. The strategy for preparation of the hollow structured Ag-HPB is intrinsically simple and does not require pre-preparation of any sacrificial templates or toxic etching agents.
View Article and Find Full Text PDFInt J Clin Exp Med
February 2015
Magnetic nanoclusters coated with ruthenium (II) complexes doped with silica (fluorescent magnetic nanoparticles or FMNPs) could be used for magnetic resonance imaging (MRI) and optical imaging (OI) of human breast cancer. To achieve the targeting imaging of tumors, the peptide cyclic-arginine-glycine-aspartic acid (RGD) was chosen as the probe for specific targeting integrin αvβ3 over expressed in human breast cancer MDA-MB-231 cells. The cytotoxicity tests in vitro showed little toxicity of the synthesized RGD-FMNPs with the size of 150 nm.
View Article and Find Full Text PDFYao Xue Xue Bao
January 2013
Mesoporous silica nanoparticles as drug carrier have become the new hot point in the field of biomedical application in recent years. This review focuses on the more recent developments and achievements on experimental design aspect of mesoporous silica nanoparticles with cancer diagnosis and therapy. The key advances of functionalization strategies of mesoporous silica nanoparticles with controlled release, tumor targeting and overcoming multidrug resistance are discussed in particular.
View Article and Find Full Text PDF