Int J Biol Macromol
February 2025
Human heavy-chain ferritin (HFn) possesses a stable and uniform cage-like structure, tumor-targeting properties, self-assembly capabilities, and biocompatibility, rendering it an ideal candidate for drug delivery. Here, we developed a dual modified HFn-based nanocage (DFn) that targets the urokinase-type plasminogen activator receptor (uPAR) and, at the same time, is responsive to the tumor microenvironment for controlled extracellular drug release. This DFn was used to co-encapsulate a photosensitizer (CPZ) and a hypoxia-activated prodrug (TPZ), creating the multifunctional nanoparticles C/T@DFn.
View Article and Find Full Text PDFUrokinase-type plasminogen activator receptor (uPAR) mediates a multitude of biological activities, has key roles in several clinical indications, including malignancies and inflammation, and, thus, has attracted intensive research over the past few decades. The pleiotropic functions of uPAR can be attributed to its interaction with an array of partners. Many inhibitors have been developed to intervene with the interaction of uPAR with these partners.
View Article and Find Full Text PDFReconfigurable optical filters with tailorable performances are highly demanded in multi-purpose adaptive signal processing applications. We demonstrate infinite impulse response (IIR) silicon optical filters with a variable filter order by switching the optical path in a 16 × 16 Benes switch chip. The basic unit of the optical filter is a dual-ring assisted Mach-Zehnder interferometer.
View Article and Find Full Text PDF