Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@FeO/carbon nanotube/TiCT (BC@FeO/CNT/TiCT) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of TiCT possesses excellent mechanical performance with exceptional tensile strength (76.
View Article and Find Full Text PDFNanofeatured polyaniline (PANI) electrodes have demonstrated impressive sensing performance due to the enhanced electrolyte diffusion and ion transport. However, the retaining of these nanostructures on substrates via electrophoretic deposition (EPD) faces an insurmountable challenge from the involved dedoping process. Here, camphorsulfonic acid is utilized with high steric effects to dope PANI (PANI-CSA) that can be directly used EPD without involving a dedoping process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Passive daytime radiative cooling (PDRC) technology provides an eco-friendly cooling strategy by reflecting sunlight reaching the surface and radiating heat underneath to the outer space through the atmospheric transparency window. However, PDRC materials face challenges in cooling performance degradation caused by outdoor contamination and requirements of easy fabrication approaches for scale-up and high cooling efficiency. Herein, a polymer composite coating of polystyrene, polydimethylsiloxane and poly(ethyl cyanoacrylate) (PS/PDMS/PECA) with superhydrophobicity and radiative cooling performance was fabricated and demonstrated to have sustained radiative cooling capability, utilizing the superhydrophobic self-cleaning property to maintain the optical properties of the coating surface.
View Article and Find Full Text PDFConductive hydrogel-based wearable strain sensors with tough, stretchable, self-recoverable, and highly sensitive properties are highly demanded for applications in electronic skin and human-machine interface. However, currently, hydrogel-based strain sensors put forward higher requirements on their biocompatibility, mechanical strength, and sensitivity. Herein, we report a poly(vinyl alcohol)/phytic acid/amino-polyhedral oligomeric silsesquioxane (PVA/PA/NH-POSS) conductive composite hydrogel prepared via a facile freeze-thaw cycle method.
View Article and Find Full Text PDFRobustness of superhydrophobic materials has been gradually taken into consideration for practical applications; however, little attention has been paid to the impact resistance of the superhydrophobicity of the materials. The present study demonstrated a new route for improving the mechanical durability, especially the impact resistance, of the superhydrophobic materials. First, poly(styrene--butadiene)/poly(ethylene-vinyl acetate) (SBR/EVA) composite monoliths with microscale cellular structures were manufactured by vulcanization-foaming processes.
View Article and Find Full Text PDFHigh-performance and rapid response electrical heaters with ultraflexibility, superior heat resistance, and mechanical properties are highly desirable for the development of wearable devices, artificial intelligence, and high-performance heating systems in areas such as aerospace and the military. Herein, a facile and efficient two-step vacuum-assisted filtration followed by hot-pressing approach is presented to fabricate versatile electrical heaters based on the high-performance aramid nanofibers (ANFs) and highly conductive Ag nanowires (AgNWs). The resultant ANF/AgNW nanocomposite papers present ultraflexibility, extremely low sheet resistance (minimum of 0.
View Article and Find Full Text PDFLightweight, compressible and highly sensitive pressure/strain sensing materials are highly desirable for the development of health monitoring, wearable devices and artificial intelligence. Herein, a very simple, low-cost and solution-based approach is presented to fabricate versatile piezoresistive sensors based on conductive polyurethane (PU) sponges coated with synergistic multiwalled carbon nanotubes (MWCNTs) and graphene. These sensor materials are fabricated by convenient dip-coating layer-by-layer (LBL) electrostatic assembly followed by in situ reduction without using any complicated microfabrication processes.
View Article and Find Full Text PDFSulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge.
View Article and Find Full Text PDF