A new heat source combination, consisting of a uniform body heat source and a tilted double ellipsoidal heat source, has been developed for cold metal transfer (CMT) wire-arc additive manufacturing of Mg-Gd-Y-Zn-Zr alloy. Simulations were conducted to analyze the temperature field and stress distribution during the process. The optimal combination of feeding speed and welding speed was found to be 8 m/min and 8 mm/s, respectively, resulting in the lowest thermal accumulation and residual stress.
View Article and Find Full Text PDFThis paper investigated the effect of silicon phase morphology and size on microstructure, mechanical properties, and corrosion resistance of the AlSi10Mg alloys fabricated by selective laser melting (SLM). Using different heat treatment conditions for SLM-fabricated alloys, the microstructure characteristics and mechanical properties are analyzed. The corrosion behavior analysis is also performed using potentiodynamic polarization, electrochemical and immersion tests.
View Article and Find Full Text PDFMaterials (Basel)
February 2022
In order to obtain a high-performance heat-resistant Mg alloy during the rheo-rolling process, the electronic structure, elastic constants, binding energy and thermodynamic properties of the MgSnLa compounds were conducted by first-principle calculations. The results show that the MgSnLa compounds (LaSn, MgLa and MgSn) all show certain metallicity, and LaSn has better mechanical properties (higher bulk modulus (46.47091 GPa) and shear modulus (26.
View Article and Find Full Text PDFTiB/316L stainless steel composites were prepared by selective laser melting (SLM), and the adhesion work, interface energy and electronic structure of TiB/γ-Fe interface in TiB/316L stainless steel composites were investigated to explore the heterogeneous nucleation potential of γ-Fe grains on TiB particles using first principles. Six interface models composed of three different stacking positions and two different terminations were established. The B-terminated-top 2 site interface ("B-top 2") was the most stable because of the largest adhesion work, smallest interfacial distances, and smallest interfacial energy.
View Article and Find Full Text PDFAlSi10Mg alloy branches were fabricated by selective laser melting (SLM), and the branches were employed to evaluate their effect on the mechanical properties. When the porous branches were compressed along its building direction, the tree column structures-type AlSi10Mg alloy branches collapsed twice, which had typical elastic, shear, collapse, and densification stages. The compressive stress concentration at the interface between the support and the porous body caused the fracture of the tree column structures-type AlSi10Mg alloy branches.
View Article and Find Full Text PDFThe AlC phase was precipitated via a reaction of graphene (Gr) with Al during selective laser melting (SLM). The interfacial nature of the Gr (0001)/AlC (0001) interface was determined using the first-principle calculation. The simulation results showed that the influence of the stacking site on the interfacial structure was limited and the Al-termination interface presented a more stable structure than the C-termination interface.
View Article and Find Full Text PDFIn order to improve the abrasion performance of 316Lss, make full use of its advantages and broaden its application fields, the tribological behavior of the TiC particles reinforced 316Lss composites-which were manufactured by selective laser melting (SLM)-were investigated. In this study, GCr15 bearing steel was selected as the friction material and experiments on the sliding friction and wear under different loads of 15 N, 25 N and 35 N at the sliding speeds of 60, 80 and 100 mm/min were carried out, respectively. The results show that the wear performance of the TiC/316Lss composite is higher than that of the matrix during the friction and wear experiments under all conditions and the wear rate of the TiC/316Lss composite decreases with increasing the friction rate.
View Article and Find Full Text PDFThis research explored a novel chemical reduction of organic aluminum for plating Al on a graphene surface. The thermodynamics of the Al plating reaction process were studied. The Al plating process consisted of two stages: the first was to prepare (C₂H₅)₃Al.
View Article and Find Full Text PDFTi/TiBCN composite coatings were prepared on a 7075 aluminum alloy surface by laser cladding. The relation between the main processing parameters (i.e.
View Article and Find Full Text PDFIn this paper, GH4169 alloy's distributions of temperature and stress during the selective laser melting (SLM) process were studied. The SLM process is a dynamic process of rapid melting and solidification, and we found there were larger temperature gradients near the turning of scan direction and at the overlap of the scanning line, which produced thermal strain and stress concentration and gave rise to warping deformations. The stresses increased as the distance became further away from the melt pool.
View Article and Find Full Text PDFIn this research, the effect of several heat treatments on the microstructure and microhardness of TC4 (Ti6Al4V) titanium alloy processed by selective laser melting (SLM) is studied. The results showed that the original acicular martensite α'-phase in the TC4 alloy formed by SLM is converted into a lamellar mixture of α + β for heat treatment temperatures below the critical temperature (₀ at approximately 893 °C). With the increase of heat treatment temperature, the size of the lamellar mixture structure inside of the TC4 part gradually grows.
View Article and Find Full Text PDFUnlabelled: Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15, 0.
View Article and Find Full Text PDFMagnesium (Mg) alloy is an attractive class of metallic biomaterial for cardiovascular applications due to its biodegradability and mechanical properties. In this study, we investigated the degradation in blood, thrombogenicity, and cytocompatibility of Magnesium-Zinc-Strontium (Mg-Zn-Sr) alloys, specifically four Mg-4 wt % Zn-xSr (x = 0.15, 0.
View Article and Find Full Text PDFCrystalline Mg-Zn-Ca ternary alloys have recently attracted significant interest for biomedical implant applications due to their promising biocompatibility, bioactivity, biodegradability and mechanical properties. The objective of this study was to characterize as-cast Mg-xZn-0.5Ca (x=0.
View Article and Find Full Text PDFA new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Magnesium-based alloys have attracted great interest for medical applications due to their unique biodegradable capability and desirable mechanical properties. When considered for medical applications, the degradation rate of these alloys must be tailored so that: (i) it does not exceed the rate at which the degradation products can be excreted from the body, and (ii) it is slow enough so that the load bearing properties of the implant are not jeopardized and do not conflict prior to and during synthesis of new tissue. Implant integration with surrounding cells and tissues and mechanical stability are critical aspects for clinical success.
View Article and Find Full Text PDFEscherichia coli has proved to be a successful host for the expression of many heterologous proteins, and much efforts have been made toward improving recombinant protein expression including the usage of strong promoters and co-expression with chaperones. But little attention was paid on the relation between expression level and function of the target protein. Glycerophosphate oxidase (GPO) is a protein with FAD cofactor (without free cysteine and disulfide bonds).
View Article and Find Full Text PDFEndothelial lipase, which is a newly identified member of the lipase family, plays an important role in high-density lipoprotein metabolism, which catalyzes the hydrolysis of high-density lipoprotein phospholipids and facilitates the clearance of high-density lipoprotein from the circulation. In addition, inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), upregulate endothelial lipase expression, and endothelial lipase also affects the expression of cytokines, which in turn play an important role in atherogenesis. Endothelial lipase expression has been associated with macrophages within human atherosclerotic lesions.
View Article and Find Full Text PDFGen Comp Endocrinol
September 2005
Pituitary, a master gland of neuroendocrine system, secretes hormones that orchestrate many physiological processes, under the regulation of multiple signaling pathways. To investigate the genes involved in hormones expression of human pituitary, homemade cDNA microarray containing 14,800 human genes/ESTs were used to profile the gene expression in both fetal and adult pituitaries. Seven hundred and twelve known genes changed over 2-fold between the both tissues.
View Article and Find Full Text PDF