Publications by authors named "Zhanyong Guo"

In the present study, we designed to link the coumarin molecule to chitosan via a triazole group and synthesized chitosan-coumarin derivatives, which were further quaternized in one step in order to further improve their solubility to obtain a second series of chitosan-coumarin ammonium salt derivatives. The structures of these chitosan derivatives were verified by FT-IR and H NMR. They were tested for their antioxidant activities.

View Article and Find Full Text PDF

The aim of the current study is to develop chitosan-based biomaterials which can sustainably release acetylsalicylic acid while presenting significant biological activity. Herein, an innovative ionic bonding strategy between hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and acetylsalicylic acid (AA) was proposed, skillfully utilizing the electrostatic attraction of the ionic bond to achieve the controlled release of drugs. Based on this point, six crosslinked -[(2-hydroxy-3-trimethylammonium)propyl]chitosan acetylsalicylic acid salt (CHACAA) hydrogel films with varying acetylsalicylic acid contents were prepared by a crosslinking reaction.

View Article and Find Full Text PDF

This study aimed to enhance the antioxidant activity of carboxymethyl inulin (CMI) by chemical modification. Therefore, a series of cationic Schiff bases bearing heteroatoms were synthesized and incorporated into CMI via ion exchange reactions, ultimately preparing 10 novel CMI derivatives (CMID). Their structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals.

View Article and Find Full Text PDF

A novel cationic lipoic acid grafted low molecular weight chitosan (LCNE-LA) conjugate was constructed and further self-assembled into GSH-responsive cationic nanocarrier to achieve better antitumor effect by combining encapsulated chemotherapy and oxidative damage induced by ROS. The resultant LCNE-LA cationic micelle exhibited favorable physicochemical properties (low CMC, small size, positively zeta potential and good stability), excellent biosafety and desired redox sensitivity. Next, doxorubicin (Dox) was embedded into hydrophobic core to form stable Dox/LCNE-LA micelle that had superior loading capacity.

View Article and Find Full Text PDF

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli.

View Article and Find Full Text PDF

To improve the antioxidant activity, sulfhydryl groups (-SH) were introduced into chitosan. Acylated chitosan derivatives, chitosan cationic salt derivatives, hydroxypropyl trimethylammonium chloride chitosan quaternary ammonium salt (HACC) derivatives and N,N,N-trimethyl chitosan iodine (TMC) derivatives were obtained. The chitosan derivatives were characterized by FTIR and H NMR to confirm the successful synthesis.

View Article and Find Full Text PDF

The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method.

View Article and Find Full Text PDF

Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores.

View Article and Find Full Text PDF

A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS.

View Article and Find Full Text PDF

A fast evolution within mitochondria genome(s) often generates discords between nuclear and mitochondria, which is manifested as cytoplasmic male sterility (CMS) and fertility restoration (Rf) system. The maize CMS-C trait is regulated by the chimeric mitochondrial gene, atp6c, and can be recovered by the restorer gene ZmRf5. Through positional cloning in this study, we identified the nuclear restorer gene, ZmRf5, which encodes a P-type pentatricopeptide repeat (PPR) family protein.

View Article and Find Full Text PDF

pH-responsive nanogels have played an increasingly momentous role in tumor treatment. The focus of this study is to design and develop pH-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for the controlled release of doxorubicin hydrochloride (DOX) while enhancing its hydrophilicity. BIMIXHAC is crosslinked with carboxymethyl chitosan (CMC), hyaluronic acid sodium salt (HA), and sodium alginates (SA) using an ion crosslinking method.

View Article and Find Full Text PDF

As a promising biological material, chitooligosaccharide (COS) has attracted increasing attention because of its unique biological activities. In this study, fourteen novel phenolic acid functional COS derivatives were successfully prepared using two facile methods. The structures of derivatives were characterized by FT-IR and H NMR spectra.

View Article and Find Full Text PDF

In this work, a series of water-soluble fluorine-functionalized chitooligosaccharide derivatives were synthesized by conjugating nicotinic acid to chitooligosaccharide via nicotinylation reaction, followed by nucleophilic reaction with ethyl bromide, benzyl bromide and fluorobenzyl bromides. Synthesized derivatives were identified structurally by Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance. In addition, the antibacterial activities of chitooligosaccharide derivatives against several disease-causing bacteria were assessed by the broth dilution method and Kirby-Bauer method, the mycelium growth rate method was used to assessing the antifungal properties of samples against three plant-threatening fungi.

View Article and Find Full Text PDF

Natural polysaccharides are abundant and renewable resource, but their applications are hampered by limited biological activity. Chemical modification can overcome these drawbacks by altering their structure. Three series of polysaccharide derivatives with coumarins were synthesized to obtain polysaccharide derivatives with enhanced biological activity.

View Article and Find Full Text PDF

Endosperm cell number is critical in determining grain size in maize (Zea mays). Here, zma-miR159 overexpression led to enlarged grains in independent transgenic lines, suggesting that zma-miR159 contributes positively to maize grain size. Targeting of ZmMYB74 and ZmMYB138 transcription factor genes by zma-miR159 was validated using 5' RACE and dual-luciferase assay.

View Article and Find Full Text PDF

New amphiphilic low molecular weight chitosan-graft-nicotinic acid bearing decyl groups (LCND) was synthesized by two-step reaction and spontaneously assembled into cationic micelle by ultra-sonication method to improve water solubility and photostability properties of α-tocopherol. The chemical structure of LCND was characterized and physical properties of cationic micelle were evaluated. Results displayed that cationic micelle exhibited strong self-assemble ability with nanoscale spherical morphology and showed best loading ability with loading content of 18.

View Article and Find Full Text PDF

Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'‑carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior.

View Article and Find Full Text PDF

In this study, nine chitosan derivatives containing aromatic five-membered heterocycles were prepared and the effects of different grafting methods on the biological activities of chitosan derivatives were investigated. The structures of all the compounds were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy, while the antioxidant, antifungal and antibacterial activities of the chitosan derivatives were tested. The experimental data suggested that the chitosan derivatives had outstanding inhibitory ability against Fusarium graminearum, Fusarium oxysporum f.

View Article and Find Full Text PDF

Herein, imidazole acids grafted chitosan derivatives were synthesized, including HACC, HACC derivatives, TMC, TMC derivatives, amidated chitosan and amidated chitosan bearing imidazolium salts. The prepared chitosan derivatives were characterized by FT-IR and H NMR. The tests evaluated the biological antioxidant, antibacterial, and cytotoxic activities of chitosan derivatives.

View Article and Find Full Text PDF

In this study, chitooligosaccharide-niacin acid conjugate was designed and synthesized through the reaction of chitooligosaccharide and nicotinic acid with the aid of ,'-carbonyldiimidazole. Its cationic derivatives were prepared by the further nucleophilic substitution reaction between the chitooligosaccharide-niacin acid conjugate and bromopropyl trialkyl ammonium bromide with different alkyl chain lengths. The specific structural characterization of all derivatives was identified using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR), and the degree of substitution was obtained using the integral area ratio of the hydrogen signals.

View Article and Find Full Text PDF

We successfully prepared a series of l-arginine Schiff bases acylated chitosan derivatives, aiming to improve the antioxidant activity and antimicrobial activity of chitosan by introducing a furan ring, pyridine ring, and l-arginine structure. The accuracy of the structures of ten compounds was characterized by FT-IR and H NMR. In terms of DPPH radical scavenging activity, except for compound CR3PCA, the scavenging rate of other compounds was higher than chitosan, especially CRCF and CRBF had strong scavenging abilities.

View Article and Find Full Text PDF

Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD.

View Article and Find Full Text PDF

The developmental phase changes of maize are closely associated with the life span, environmental adaption, plant height, and disease resistance of the plant and eventually determines the grain yield and quality of maize. A natural mutant, (), was selected from the inbred line KN5585. Compared with the wild type plant, the mutant exhibits deceased plant stature, accelerated developmental stages, and decreased leaf size.

View Article and Find Full Text PDF

Excessive inorganic ions in vivo may lead to electrolyte disorders and induce damage to the human body. Therefore, preparation of enhanced bioactivity compounds, composed of activated organic cations and organic anions, is of great interest among researchers. In this work, glucosamine-heparin salt (GHS) was primarily synthesized with positively charged glucosamine hydrochloride (GAH) and negatively charged heparin sodium (Heps) by ion exchange method.

View Article and Find Full Text PDF