A highly sensitive aptamer sensor (aptasensor) is proposed based on metal-organic frameworks-silver nanoparticles (AgNPs@MOF) to detect sulfadimethoxine (SDM) by surface-enhanced Raman spectroscopy (SERS). AgNPs@MOF with SERS activity was successfully fabricated by synthesizing AgNPs in situ on the surface of MIL-101(Fe), and SDM aptamer and Raman reporter 4-aminophenthiophenol (4-ATP) were selected as specific recognition elements and signal probes, respectively. When SDM was absent, the SDM aptamers were effectively adsorbed on the surface of AgNPs@MOF, thus keeping AgNPs@MOF in a dispersed state, resulting in a weakened SERS signal of 4-ATP.
View Article and Find Full Text PDFCurrently, nanozymes have made important research progress in the fields of catalysis, biosensing and tumor therapy, but most of nanozymes sensing systems are single-mode detection, which are easily affected by environment and operation, so it is crucial to construct nanozymes sensing system with dual-signal detection to obtain a more stable and reliable performance. In this paper, Ag-carbon dots (Ag-CDs) bifunctional nanomaterials were synthesized using carbon dots as reducing agent and protective agent by a facile and green one-step method. A simple and sensitive colorimetric-SERS dual-mode sensing platform was constructed for the detection of glucose and glutathione(GSH) in body fluids by taking advantage of good peroxidase-like and SERS activities of Ag-CDs.
View Article and Find Full Text PDFResidues of sulfadimethoxine (SDM) in animal-derived foods have attracted widespread public concern. Herein, we propose an aptamer-based colorimetric/SERS dual-mode sensing strategy for the determination of SDM based on hexadecyl trimethyl ammonium bromide (CTAB) induced aggregation of nanoparticles. In the absence of SDM, the SDM aptamer formed a supramolecular composite with CTAB, and the 4-mercaptopyrimidine functionalized gold nanoparticles (AuNPs@4-MPY) remained dispersed due to the lack of CTAB.
View Article and Find Full Text PDF