Generalized Category Discovery (GCD) addresses a more realistic and challenging setting in semi-supervised visual recognition, where unlabeled data contains samples from both known and novel categories. Recently, prototypical classifier has shown prominent performance on this issue, with the Softmax-based Cross-Entropy loss (SCE) commonly employed to optimize the distance between a sample and prototypes. However, the inherent non-bijectiveness of SCE prevents it from resolving intraclass relations among samples, resulting in semantic ambiguity.
View Article and Find Full Text PDFGeneralized Person Re-Identification (GReID) aims to develop a model capable of robust generalization across unseen target domains, even with training on a limited set of observed domains. Recently, methods based on the Attack-Defense mechanism are emerging as a prevailing technology to this issue, which treats domain transformation as a type of attack and enhances the model's generalization performance on the target domain by equipping it with a defense module. However, a significant limitation of most existing approaches is their inability to effectively model complex domain transformations, largely due to the separation of attack and defense components.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2023
This work focuses on the projected clustering problem. Specifically, an efficient and parameter-free clustering model, named discriminative projected clustering (DPC), is proposed for simultaneously low-dimensional and discriminative projection learning and clustering, from the perspective of least squares regression. The proposed DPC, a constrained regression model, aims at finding both a transformation matrix and a binary indicator matrix to minimize the sum-of-squares error.
View Article and Find Full Text PDFIEEE Trans Cybern
February 2023
In the field of data mining, how to deal with high-dimensional data is a fundamental problem. If they are used directly, it is not only computationally expensive but also difficult to obtain satisfactory results. Unsupervised feature selection is designed to reduce the dimension of data by finding a subset of features in the absence of labels.
View Article and Find Full Text PDFMatrix completion, in essence, involves recovering a low-rank matrix from a subset of its entries. Most existing methods for matrix completion neglect two significant issues. First, in several practical applications, such as collaborative filtering, some samples may be corrupted completely.
View Article and Find Full Text PDFLow Rank Regularization (LRR), in essence, involves introducing a low rank or approximately low rank assumption to target we aim to learn, which has achieved great success in many data analysis tasks. Over the last decade, much progress has been made in theories and applications. Nevertheless, the intersection between these two lines is rare.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2018
Without any prior structure information, Nuclear Norm Minimization (NNM), a convex relaxation for Rank Minimization (RM), is a widespread tool for matrix completion and relevant low rank approximation problems. Nevertheless, the result derivated by NNM generally deviates the solution we desired, because NNM ignores the difference between different singular values. In this paper, we present a non-convex regularizer and utilize it to construct two matrix completion models.
View Article and Find Full Text PDF