Publications by authors named "Zhanxiang Yuan"

Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy) ] photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions.

View Article and Find Full Text PDF

Quantifying the content of metal-based anticancer drugs within single cancer cells remains a challenge. Here, we used single-cell inductively coupled plasma mass spectrometry to study the uptake and retention of mononuclear (Ir1) and dinuclear (Ir2) Ir photoredox catalysts. This method allowed rapid and precise quantification of the drug in individual cancer cells.

View Article and Find Full Text PDF

Solid-state lithium metal batteries (SLMBs) are attracting enormous attention due to their enhanced safety and high theoretical energy density. However, the alkali lithium with high reducibility can react with the solid-state electrolytes resulting in the inferior cycle lifespan. Herein, inspired by the idea of interface design, the 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide as an initiator to generate an artificial protective layer in polymer electrolyte is selected.

View Article and Find Full Text PDF

A bromine-substituted thermally activated delayed fluorescent (TADF) molecule AQCzBr2 is designed with both small singlet-triplet splitting (ΔEST) and increased spin-orbit coupling (SOC) to boost intersystem crossing (ISC) for singlet oxygen generation. AQCzBr2 nanoparticles (NPs) demonstrate high productivity of singlet oxygen generation (ΦΔ = 0.91) which allows highly efficient photodynamic therapy toward cancer cells.

View Article and Find Full Text PDF