Publications by authors named "Zhanwen Xiao"

Article Synopsis
  • High-precision neural recording is crucial for understanding how the nervous system communicates, leading to a push for better implantable microelectrode arrays (MEAs).
  • The research introduces a new MEA substrate using silk fibroin that is flexible, biocompatible, and minimizes mechanical mismatch with tissues, alongside a novel method to enhance conductivity and reduce impedance.
  • Experimental results show the silk-based MEAs have excellent capabilities for recording weak neural signals, highlighted by the ability to detect action potentials, which could advance our understanding of neural circuits.
View Article and Find Full Text PDF

Electrical deep brain stimulation (DBS) is a top priority for pharmacoresistant epilepsy treatment, while less-invasive wireless DBS is an urgent priority but challenging. Herein, we developed a conceptual wireless DBS platform to realize local electric stimulation via 1D-structured magnetoelectric FeO@BaTiO nanochains (FBC). The FBC was facilely synthesized via magnetic-assisted interface coassembly, possessing a higher electrical output by inducing larger local strain from the anisotropic structure and strain coherence.

View Article and Find Full Text PDF

The past decades have witnessed the rational design of novel functional nanomaterials and the potential to revolutionize many applications. With the increasing focus on electronic biological processes, novel photovoltaic nanomaterials are highly expectable for empowering new therapeutic strategies such as establishing a link between endogenous electric field (EEF) and electrotherapy. Compared to traditional invasive stimulation, the light-initiating strategy has the advantages of non-invasion, non-power supply, and precise controllability.

View Article and Find Full Text PDF

A flexible non-transient electrical platform that can realize bidirectional neural communication from living tissues is of great interest in neuroscience to better understand basic neuroscience and the nondrug therapy of diseases or disorders. The development of soft, biocompatible, and conductive neural interface with mechanical coupling and efficient electrical exchange is a new trend but remains a challenge. Herein, we designed a multifunctional neural electrical communication platform in the form of a mechanically compliant, electrically conductive, and biocompatible hydrogel electrode.

View Article and Find Full Text PDF

The improved corrosion resistance, osteogenic activity, and antibacterial ability are the key factors for promoting the large-scale clinical application of magnesium (Mg)-based implants. In the present study, a novel nanocomposite coating composed of inner magnesium hydroxide, middle graphene oxide, and outer hydroxyapatite (Mg(OH)/GO/HA) is constructed on the surface of Mg-0.8Ca-5Zn-1.

View Article and Find Full Text PDF

Electrical stimulation is regarded pivotal to promote repair of nerve injuries, however, failed to get extensive application in vivo due to the challenges in noninvasive electrical loading accompanying with construction of biomimetic cell niche. Herein, a new concept of magneto responsive electric 3D matrix for remote and wireless electrical stimulation is demonstrated. By the preparation of magnetoelectric core/shell structured Fe O @BaTiO NPs-loaded hyaluronan/collagen hydrogels, which recapitulate considerable magneto-electricity and vital features of native neural extracellular matrix, the enhancement of neurogenesis both in cellular level and spinal cord injury in vivo with external pulsed magnetic field applied is proved.

View Article and Find Full Text PDF

The surface activation of titanium plays a key role in the biological properties of titanium implants as bone repair materials. Improving the ability to induce apatite precipitation on the surface was a well-accepted titanium bioactivation route. In this study, advanced femtosecond laser microfabrication was applied to modify titanium surfaces, and the effect of femtosecond laser etching on apatite precipitation was investigated and compared with popular titanium modification methods.

View Article and Find Full Text PDF

Soil microbe is crucial to a healthy soil, therefore its diversities and abundances under different conditions are still need fully understand.The aims of the study were to characterize the community structure and diversity of microbe in the rhizosphere soil after continuous maize seed production, and the relationship between the disease incidence of four diseases and the variation of the rhizosphere microbe. The results showed that different fungal and bacterial species were predominant in different cropping year, and long-term maize seed production had a huge impact on structure and diversity of soil microbial.

View Article and Find Full Text PDF

Construction of biomimetic microenvironment is vital to understand the relationship between matrix mechanical cues and cell fate, as well as to explore potential tissue engineering scaffolds for clinical application. In this study, through the enzymatic mineralizable collagen hydrogel system, we established the biomimetic bone matrix which was capable of realizing mechanical regulation independent of mineralization by incorporation of phosphorylated molecules (vinylphosphonic acid, VAP). Then, based on the biomimetic mineralized matrix with same composition but significantly different mechanical stiffness, we further investigated the effect of matrix stiffness on osteogenic differentiation of bone marrow stromal cells (BMSCs).

View Article and Find Full Text PDF

Weak osteogenic activity affects the long-term fixation and lifespan of titanium (Ti) implants. Surface modification along with a built-in porous structure is a highly considerable approach to improve the osteoinduction and osseointegration capacity of Ti. Herein, the osteoinduction and osteogenic activities of electrochemically deposited (ED) nanoplate-like, nanorod-like and nanoneedle-like hydroxyapatite (HA) coatings (named EDHA-P, EDHA-R, and EDHA-N, respectively) were evaluated in vitro and in vivo by comparison with those of acid/alkali (AA) treatment.

View Article and Find Full Text PDF

Various surface bioactivation technology has been confirmed to improve the osteogenic ability of porous titanium (pTi) implants effectively. In this study, a three-layered composite coating, i.e.

View Article and Find Full Text PDF

Purpose: The aim of research is to fabricate nanostructured hydroxyapatite (HA) coatings on the titanium via electrochemical deposition (ED). Additionally, the biological properties of the ED-produced HA (EDHA) coatings with a plate-like nanostructure were evaluated in vitro and in vivo by undertaking comparisons with those prepared by acid/alkali (AA) treatment and by plasma spray-produced HA (PSHA) nanotopography-free coatings.

Materials And Methods: Nanoplate-like HA coatings were prepared through ED, and nanotopography-free PSHA coatings were fabricated.

View Article and Find Full Text PDF

Background: Angiogenic and osteogenic activities are two major problems with biomedical titanium (Ti) and other orthopedic implants used to repair large bone defects.

Purpose: The aim of this study is to prepare hydroxyapatite (HA) coatings on the surface of Ti by using electrochemical deposition (ED), and to evaluate the effects of nanotopography and silicon (Si) doping on the angiogenic and osteogenic activities of the coating in vitro.

Materials And Methods: HA coating and Si-doped HA (HS) coatings with varying nanotopographies were fabricated using two ED modes, ie, the pulsive current (PC) and cyclic voltammetry (CV) methods.

View Article and Find Full Text PDF

Natural nerve tissue is composed of nerve bundles with multiple aligned assembles, and matrix electroconductivity is beneficial to the transmission of intercellular electrical signals, or effectively deliver external electrical cues to cells. Herein, aiming at the biomimetic design of the extracellular matrix for neurons, we first synthesized electroconductive polypyrrole (PPy) nanoparticles with modified hydrophilicity to improve their uniformity in collagen hydrogel. Next, cell-laden collagen-PPy hybrid hydrogel microfibers with highly oriented microstructures were fabricated via a microfluidic chip.

View Article and Find Full Text PDF

Adequate bone regeneration has been difficult to achieve at segmental bone defects caused by disease. The surface structure and phase composition of calcium phosphate bioceramic are crucial for its bioactivity and osteoinductivity. In the present study, biphasic calcium phosphate (BCP) bioceramics composed of micro-whiskers and nanoparticles hybrid-structured surface (hBCP) were fabricated via a hydrothermal reaction.

View Article and Find Full Text PDF

Biomedical porous titanium (Ti) scaffolds were fabricated by an improved polymeric sponge replication method. The unique formulations and distinct processing techniques, i.e.

View Article and Find Full Text PDF

A simple approach to fabricating hydroxyxapatite/titanium dioxide (HA/TiO) coating on porous titanium (Ti) scaffolds was developed in the present study. Surface TiO layer was firstly formed on porous Ti scaffolds with multi-scale pores by acid-alkali (AA) treatment. The outer HA layer was then formed on the TiO layer by subsequent pulse electrochemical deposition (ED) technique.

View Article and Find Full Text PDF

To evaluate the effects of manure application on continuous maize seed production, 10-year cattle manure on soil properties, heavy metal in soil and plant were evaluated and investigated in calcareous soil. Results showed that manure application increased soil organic matter, total and available nutrients, pH, and electrical conductivity (EC), and the most massive rate caused the highest increase. Manure application led to an increase in exchangeable fraction and an increase of availability of heavy metal.

View Article and Find Full Text PDF

The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate.

View Article and Find Full Text PDF

We focus our studies on DNA-chromophore motif on surfaces using samples prepared by the synthetic methods described by Wang and Li in a recent publication (J. Am. Chem.

View Article and Find Full Text PDF