J Am Stat Assoc
December 2023
Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly.
View Article and Find Full Text PDFTesting the significance of predictors in a regression model is one of the most important topics in statistics. This problem is especially difficult without any parametric assumptions on the data. This paper aims to test the null hypothesis that given confounding variables , does not significantly contribute to the prediction of under the model-free setting, where and are possibly high dimensional.
View Article and Find Full Text PDFCausal relationships are of crucial importance for biological and medical research. Algorithms have been proposed for causal structure learning with graphical visualizations. While much of the literature focuses on biological studies where data often follow the same distribution, for example, the normal distribution for all variables, challenges emerge from epidemiological and clinical studies where data are often mixed with continuous, binary, and ordinal variables.
View Article and Find Full Text PDFIntroduction: Cross-sectional surveys found behavioral heterogeneity among dual users of combustible and electronic cigarettes. Yet, prior classification did not reflect dynamic interactions between cigarette and e-cigarette consumption, which may reveal changes in product-specific dependence. The contexts of dual use that could inform intervention were also understudied.
View Article and Find Full Text PDFIntroduction: Existing e-cigarette dependence scales are mainly validated based on retrospective overall consumption or perception. Further, given that the majority of adult e-cigarette users also use combustible cigarettes, it is important to determine whether e-cigarette dependence scales capture the product-specific dependence. This study fills in the current knowledge gaps by validating e-cigarette dependence scales using novel indices of dynamic patterns of e-cigarette use behaviors and examining the association between dynamic patterns of smoking and e-cigarette dependence among dual users.
View Article and Find Full Text PDFBackground: The association between short-term emotion dynamics and long-term psychopathology has been well established in the psychology literature. Yet, dynamic measures for inertia and instability of negative and positive affect have not been studied in terms of their association with cigarette dependence. This study builds an important bridge between the psychology and substance use literatures by introducing these novel measures and conducting a comprehensive examination of such association with intervention implications.
View Article and Find Full Text PDF