Publications by authors named "Zhanqiang Xue"

We experimentally demonstrate a liquid crystal (LC)-integrated EIT metasurface for active THz polarization conversion and asymmetric transmission. By controlling the LC orientation under static magnetic field anchoring and an adjustable electric field, the device realizes the active control from the OFF state to the ON state, corresponding to the orthogonal polarization excitation modes of the EIT metasurface. Furthermore, based on the different polarization responses at forward and backward incidences, we achieve asymmetric transmission at the EIT peak and two nearby resonances, with its isolation actively manipulated by the external electric field.

View Article and Find Full Text PDF

Terahertz absorbers are crucial to the cutting-edge techniques in the next-generation wireless communications, imaging, sensing, and radar stealth, as they fundamentally determine the performance of detectors and cloaking capabilities. It has long been a pressing task to find absorbers with customizable performance that can adapt to various environments with low cost and great flexibility. Here, perfect absorption empowered by bound states in the continuum (BICs) is demonstrated, allowing for the tailoring of absorption coefficient, bandwidth, and field of view.

View Article and Find Full Text PDF

Topological photonic crystals with robust pseudo-spin and valley edge states have shown promising and wide applications in topological waveguides, lasers, and antennas. However, the limited bandwidth and intrinsic coupling properties of a single pseudo-spin or valley edge state have imposed restrictions on their multifunctional applications in integrated photonic circuits. Here, we propose a topological photonic crystal that can support pseudo-spin and valley edge states simultaneously in a single waveguiding channel, which effectively broadens the bandwidth and enables a multipath routing solution for terahertz information processing and broadcasting.

View Article and Find Full Text PDF

The mechanism of radical generation in HRP-NADH-O2/H2O2 systems and state-change of horseradish peroxidase (HRP) was investigated by using ESR and UV measurements, and the novel enzyme-coenzymatic systems were performed to degrade chlorobenzene as a non-phenolic persistent organic pollutants. The UV results showed that compound III was produced from HRP oxidized by hydrogen peroxide with the catalysis of NADH, which would generate hydroxyl radical. The ESR results demonstrated the production of *OH and O2-.

View Article and Find Full Text PDF