Patients with pancreatic cancer (PC) showing mismatch repair (MMR) deficiency may benefit from immunotherapy. Microsatellite instability (MSI) is a hallmark of MMR deficiency (MMR-D). Here, we estimated the prevalence of MSI in PC, investigated germline and somatic mutations in the three MMR genes (, , and ), and assessed the relationship between MMR genes mutations and MSI status in PC.
View Article and Find Full Text PDFBackground: Fabry disease (FD) is a rare hereditary multisystem disease caused by variants of the gene. Determination of gene variants and identification of genotype-phenotype correlations allow us to explain the features of FD associated with predominant damage of one or another system, both in the classical and atypical forms of FD, as well as in cases with late manifestation and involvement of one of the systems.
Methods: The study included 293 Russian patients with pathogenic variants of the gene, which were identified as a result of various selective screening programs.
Successful therapy in a cohort with early onset Danon disease (DD) highlights the potential importance of earlier disease recognition. We present experience from the largest National Pediatric Center in Russia for cardiomyopathy patients. This report focuses on identification of early clinical features of DD in the pediatric population by detailed pedigree analysis and review of medical records.
View Article and Find Full Text PDFJ Allergy Clin Immunol
September 2023
The pathogenic variants of genes encoding proteins, participating in the formation and functioning of epidermis and dermo-epidermal junctions, create a large variety of clinical phenotypes from: small localized to severe generalized dermatitis, as well as early, or even, prenatal death due to extensive epidermis loss. The diagnostic panel in this study was developed for the purposes of identifying these pathogenic genetic variants in 268 Russian children, who possessed the epidermolysis bullosa symptom complex in a selection of 247 families. This panel included the targeted areas of 33 genes, which are genetic variants that can lead to the development of the phenotype mentioned above.
View Article and Find Full Text PDF(1) Hypophosphatasia (HPP) is a rare inherited disease caused by mutations (pathogenic variants) in the ALPL gene which encodes tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by impaired bone mineral metabolism due to the low enzymatic activity of TNSALP. Knowledge about the structure of the gene and the features and functions of various ALPL gene variants, taking into account population specificity, gives an understanding of the hereditary nature of the disease, and contributes to the diagnosis, prevention, and treatment of the disease.
View Article and Find Full Text PDFBackground: There is a vast number of screening studies described in the literature from the beginning of the twenty-first century to the present day. Many of these studies are related to the estimation of Fabry disease (FD) morbidity among patients from high-risk groups, including adult patients with hypertrophic cardiomyopathy (HCM) and left ventricular hypertrophy (LVH). These studies show diverse detection frequencies (0-12%) depending on the methodology.
View Article and Find Full Text PDFNephropathic cystinosis is a rare autosomal recessive disorder characterized by amino acid cystine accumulation and caused by biallelic mutations in the gene. The analysis methods are as follows: tandem mass spectrometry to determine the cystine concentration in polymorphonuclear blood leukocytes, Sanger sequencing for the entire coding sequence and flanking intron regions of the gene, multiplex PCR to detect a common mutation-a 57 kb deletion, and multiplex ligation-dependent probe amplification to analyze the number of exon copies in the gene. Haplotype analysis of chromosomes with major mutations was carried out using microsatellite markers D17S831, D17S1798, D17S829, D17S1828, and D17S1876.
View Article and Find Full Text PDFmiRNA expression over different time periods (24 and 48 h) using the quantitative RT-PCR and deep sequencing has been evaluated in a model of photochemically induced thrombosis. A combination of two approaches allowed us to determine the miRNA expression patterns caused by ischemia. Nine miRNAs, including let-7f-5p, miR-221-3p, miR-21-5p, miR-30c-5p, miR-30a-3p, miR-223-3p, miR-23a-3p, miR-22-5p, and miR-99a-5p, were differentially expressed in brain tissue and leukocytes of rats 48 h after onset of ischemia.
View Article and Find Full Text PDF