Publications by authors named "Zhanhui Gan"

Article Synopsis
  • The differences in phospholipids between bacterial and mammalian cell membranes offer new ways to design antimicrobial drugs, but distinguishing between similar phospholipids (PG and PS) is challenging.
  • A new class of antimicrobial peptides (RAPs) has been developed that can specifically identify bacterial phosphatidylglycerol (PG) due to their unique helical structure.
  • One particular RAP, L-MMBen, not only effectively targets PG but also shows low toxicity in living organisms and proves to be effective in treating infections in mice models.
View Article and Find Full Text PDF

Despite being predicted to be a thermodynamically equilibrium structure, the absence of direct experimental evidence of hexagonally close-packed spherical phase in single-component block copolymers raises uncomfortable concerns regarding the existing fundamental phase principles. This work presents a robust approach to regulate the phase behavior of linear block copolymers by deliberately breaking molecular symmetry, and the hexagonally close-packed lattice is captured in a rigorous single-component system. A collection of discrete ABA triblock copolymers is designed and prepared through an iterative growth method.

View Article and Find Full Text PDF

Molecular architecture is a critical factor in regulating phase behaviors of the block copolymer and prompting the formation of unconventional nanostructures. This work meticulously designed a library of isomeric miktoarm star polymers with an architectural evolution from the linear-branched block copolymer to the miktoarm star block copolymer and to the star-like block copolymer (i.e.

View Article and Find Full Text PDF

This work demonstrates an effective and robust approach to regulate phase behaviors of a block copolymer by programming local features into otherwise homogeneous linear chains. A library of sequence-defined, isomeric block copolymers with globally the same composition but locally different side chain patterns were elaborately designed and prepared through an iterative convergent growth method. The precise chemical structure and uniform chain length rule out all inherent molecular defects associated with statistical distribution.

View Article and Find Full Text PDF

The inherent statistical heterogeneities associated with chain length, composition, and architecture of synthetic block copolymers compromise the quantitative interpretation of their self-assembly process. This study scrutinizes the contribution of molecular architecture on phase behaviors using discrete ABA triblock copolymers with precise chemical structure and uniform chain length. A group of discrete triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions.

View Article and Find Full Text PDF

Molecular shape is an essential parameter that regulates the self-organization and recognition process, which has not yet been well appreciated and exploited in block polymers due to the lack of precise and efficient modulation methods. This work (i) develops a robust approach to break the intrinsic symmetry of linear polymers by introducing geometric features into otherwise homogeneous chains and (ii) quantitatively highlights the critical contribution of molecular geometry/architecture to the self-assembly behaviors. Iteratively connecting homologous monomers of different side chains according to pre-designed sequences generates discrete polymers with exact chemical structure, uniform chain length, and programmable side-chain gradient along the backbone, which transcribes into diverse shapes.

View Article and Find Full Text PDF

As size-amplified analogues of canonical macromolecules, polymeric chains built up by "giant" monomers represent an experimental realization of the "beads-on-a-string" model at larger length scales, which could provide insights into fundamental principles of polymer science. In this work, we modularly constructed discrete giant polymeric chains using nanosized building blocks (polyhedral oligomeric silsesquioxane, POSS) as basic repeat units through an efficient and robust iterative exponential growth approach, with precise control on molecular parameters, including size, composition, regioconfiguration, and surface functionalities. Their chemical structures were fully characterized by nuclear magnetic resonance spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Polymeric chains made of "giant" monomers at a larger length scale provide intriguing insights into the fundamental principles of polymer science. In this study, we modularly prepared a library of discrete amphiphilic polymeric chains using molecular nanoparticles as repeat units, with exact control of composition, chain length, surface property, and regio-configuration. These giant polymeric chains self-assembled into a rich collection of highly ordered phases.

View Article and Find Full Text PDF

Anisotropic patchy particles with molecular precision are exquisite building blocks for constructing diverse meso-structures of high complexity. In this research, a library of molecular patchy clusters consisting of a collection of functional polyhedral oligomeric silsesquioxane cages with exact regio-configuration and composition were prepared through a robust and modular approach. By meticulously tuning the composition, molecular symmetry, and other parameters, these patchy clusters could assemble into diverse nanostructures, including unconventional complex spherical phases (.

View Article and Find Full Text PDF

This work describes the first rigorous example of a single-component block copolymer system forming unconventional spherical phases. A library of discrete block polymers with uniform chain length and diverse architectures were modularly prepared through a combination of a step-growth approach and highly efficient coupling reactions. The precise chemical structure eliminates all the molecular defects associated with molar weight, dispersity, and compositional ratio.

View Article and Find Full Text PDF