Publications by authors named "Zhanhua Wei"

The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.

View Article and Find Full Text PDF

Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.

View Article and Find Full Text PDF

Wide-bandgap perovskite solar cells (WBG-PSCs) are critical for developing perovskite/silicon tandem solar cells. The defect-rich surface of WBG-PSCs will lead to severe interfacial carrier loss and phase segregation, deteriorating the device's performance. Herein, we develop a surface reconstruction method by removing the defect-rich crystal surface by nano-polishing and then passivating the newly exposed high-crystallinity surface.

View Article and Find Full Text PDF

Eco-friendly Sn-based perovskites show significant potential for high-performance second near-infrared window light-emitting diodes (900 nm - 1700 nm). Nevertheless, achieving efficient and stable Sn-based perovskite second near-infrared window light-emitting diodes remains challenging due to the propensity of Sn to oxidize, resulting in detrimental Sn-induced defects and compromised device performance. Here, we present a targeted strategy to eliminate Sn-induced defects through moisture-triggered hydrolysis of tin tetrahalide, without degrading Sn in the CsSnI film.

View Article and Find Full Text PDF
Article Synopsis
  • * Research has focused on enhancing compositional engineering and defect passivation of perovskite layers for better multi-color and high-efficiency outputs, but the role of charge transport layers (CTLs) in this technology has been less explored.
  • * The review highlights the importance of CTL optimization in improving charge transport efficiency, surface passivation, and overall Pero-LED performance, while also categorizing potential CTL materials and strategies for enhancement.
View Article and Find Full Text PDF

A stable and compact fullerene electron transport layer (ETL) is crucial for high-performance inverted perovskite solar cells (PSCs). However, traditional fullerene-based ETLs like C and PCBM are prone to aggregate under operational conditions, a challenge recently recognized by academic and industrial researchers. Here, we designed and synthesized a novel cross-linkable fullerene molecule, bis((3-methyloxetan-3-yl)methyl) malonate-C monoadduct (BCM), for use as an ETL in PSCs.

View Article and Find Full Text PDF

In 2024, tandem perovskite light-emitting diodes (tandem-PLEDs) achieved a breakthrough external quantum efficiency of 43.42%, with an organic electroluminescence (EL) unit stacked atop a perovskite EL unit, surpassing the previous single-junction perovskite LEDs. This innovative design enables a higher brightness at lower currents, enhancing the longevity and efficiency of the tandem-PLEDs.

View Article and Find Full Text PDF

Improving the efficiency of tin-based perovskite solar cells (TPSCs) is significantly hindered by energy level mismatch and weak interactions at the interface between the tin-based perovskite and fullerene-based electron transport layers (ETLs). In this study, four well-defined multidentate fullerene molecules with 3, 4, 5, and 6 diethylmalonate groups, labeled as FM3, FM4, FM5, and FM6 are synthesized, and employed as interfacial layers in TPSCs. It is observed that increasing the number of functional groups in these fullerenes leads to shallower lowest unoccupied molecular orbital (LUMO) energy levels and enhance interfacial chemical interactions.

View Article and Find Full Text PDF

Designing an efficient modification molecule to mitigate non-radiative recombination at the NiO/perovskite interface and improve perovskite quality represents a challenging yet crucial endeavor for achieving high-performance inverted perovskite solar cells (PSCs). Herein, we synthesized a novel fullerene-based hole transport molecule, designated as FHTM, by integrating C with 12 carbazole-based moieties, and applied it as a modification molecule at the NiO/perovskite interface. The in situ self-doping effect, triggered by electron transfer between carbazole-based moiety and C within the FHTM molecule, along with the extended π conjugated moiety of carbazole groups, significantly enhances FHTM's hole mobility.

View Article and Find Full Text PDF

The imperfect charge behavior at the interfaces of perovskite/electron-transport layer (ETL)/transparent conducting oxide (TCO) limits the further performance improvement of perovskite/silicon tandem solar cells. Herein, an indium tin oxide interlayer is deposited between ETL and TCO to address this issue. Specifically, the interlayer is prepared using an all-physical and HO-free method, electron-beam evaporation, which can avoid any potential damage to the underlying perovskite and ETL layers.

View Article and Find Full Text PDF

Controlling the interplay between relaxation and charge/energy transfer processes in the excited states of photocatalysts is crucial for the performance of artificial photosynthesis. Metal-to-ligand charge-transfer triplet states (MLCT*) of ruthenium(II) complexes are broadly implemented for photocatalysis, but an effective means of managing the triplets for enhanced photocatalysis has been lacking. Herein, We proposed a strategy to considerably prolong the triplet excited-state lifetime by decorating a ruthenium(II) phosphine complex (RuP-1) with pendent polyaromatic hydrocarbons (PAHs).

View Article and Find Full Text PDF

Surface defect passivation and carrier injection regulation have emerged as effective strategies for enhancing the performance of perovskite light-emitting diodes (Pero-LEDs). It usually requires two functional molecules to realize defect passivation and carrier injection regulation separately. In other words, developing one single molecule possessing these capabilities remains challenging.

View Article and Find Full Text PDF

Tin-based perovskite solar cells (TPSCs) have received increasing attention due to their low toxicity, high theoretical efficiency, and potential applications as wearable devices. However, the inherent fast and uncontrollable crystallization process of tin-based perovskites results in high defect density in the film. Meanwhile, when fabricated into flexible devices, the prepared perovskite film exhibits inevitable brittleness and high Young's modulus, seriously weakening the mechanical stability.

View Article and Find Full Text PDF

All-small-molecule organic solar cells with good batch-to-batch reproducibility combined with non-halogen solvent processing show great potential for commercialization. However, non-halogen solvent processing of all-small-molecule organic solar cells are rarely reported and its power conversion efficiencies are very difficult to improve. Herein, we designed and synthesized a small molecule donor BM-ClEH that can take advantage of strong aggregation property induced by intramolecular chlorine-sulfur non-covalent interaction to improve molecular pre-aggregation in tetrahydrofuran and corresponding micromorphology after film formation.

View Article and Find Full Text PDF

Light-induced phase segregation is one of the main issues restricting the efficiency and stability of wide-bandgap perovskite solar cells (WBG PSCs). Small organic molecules with abundant functional groups can passivate various defects, and therefore suppress the ionic migration channels for phase segregation. Herein, a series of pyridine-derivative isomers containing amino and carboxyl are applied to modify the perovskite surface.

View Article and Find Full Text PDF

Layered metal-halide perovskites, a category of self-assembled quantum wells, are of paramount importance in emerging photonic sources, such as lasers and light-emitting diodes (LEDs). Despite high trap density in two-dimensional (2D) perovskites, efficient non-radiative energy funneling from wide- to narrow-bandgap components, sustained by the Förster resonance energy transfer (FRET) mechanism, contributes to efficient luminescence by light or electrical injection. Herein, it is demonstrated that bandgap extension of layered perovskites to the blue-emitting regime will cause sluggish and inefficient FRET, stemming from the tiny spectral overlap between different phases.

View Article and Find Full Text PDF

Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement.

View Article and Find Full Text PDF

Efficient charge injection and radiative recombination are essential to achieving high-performance perovskite light-emitting diodes (Pero-LEDs). However, the perovskite emission layer (EML) and the electron transport layer (ETL) form a poor physically interfacial contact and non-negligible charge injection barrier, limiting the device performance. Herein, we utilize a phosphine oxide, 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), to treat the perovskite/ETL interface and form a chemically bonded contact.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have demonstrated over 25% power conversion efficiency (PCE) via efficient surface passivation. Unfortunately, state-of-the-art perovskite post-treatment strategies can solely heal the top interface defects. Herein, an ion-diffusion management strategy is proposed to concurrently modulate the top interfaces, buried interfaces, and bulk interfaces (i.

View Article and Find Full Text PDF

Constructing 2D/3D perovskite heterojunctions is effective for the surface passivation of perovskite solar cells (PSCs). However, previous reports that studying perovskite post-treatment only physically deposits 2D perovskite on the 3D perovskite, and the bulk 3D perovskite remains defective. Herein, we propose Cl-dissolved chloroform as a multifunctional solvent for concurrently constructing 2D/3D perovskite heterojunction and inducing the secondary growth of the bulk grains.

View Article and Find Full Text PDF

The modification of perovskite precursor by a series of phosphoryl chloride molecules can indeed improve the performance of perovskite LEDs (Pero-LEDs). The bis(2-oxo-3-oxazolidinyl) phosphinic chloride can not only regulate the phase distribution by controlling the crystallization rate but also passivate the defects of the quasi-2D perovskite. Highly efficient and reproducible Pero-LEDs are achieved with an maximum external quantum efficiency (EQE) of 20.

View Article and Find Full Text PDF

Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (V) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)PbCl (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent.

View Article and Find Full Text PDF

Metal halide perovskite films are prepared mainly by solution-based methods. However, the preparation process is prone to produce massive defects at the interface between the perovskite emitting layer and the charge transport layers, limiting the perovskite light-emitting diode device performance. Aiming at this problem, researchers have proposed many effective strategies to passivate these interface defects.

View Article and Find Full Text PDF

Tin-based perovskite solar cells (TPSCs) are attracting intense research interest due to their excellent optoelectric properties and eco-friendly features. To further improve the device performance, developing new fullerene derivatives as electron transporter layers (ETLs) is highly demanded. Four well-defined regioisomers (trans-2, trans-3, trans-4, and e) of diethylmalonate-C bisadduct (DCBA) are isolated and well characterized.

View Article and Find Full Text PDF

Understanding the function of moisture on perovskite is challenging since the random environmental moisture strongly disturbs the perovskite structure. Here, we develop various N-protected characterization techniques to comprehensively study the effect of moisture on the efficient cesium, methylammonium, and formamidinium triple-cation perovskite (CsFAMA)Pb(IBr). In contrast to the secondary measurements, the established air-exposure-free techniques allow us directly monitor the influence of moisture during perovskite crystallization.

View Article and Find Full Text PDF