Publications by authors named "Zhanhong Zhao"

The identification of cancer subtypes is crucial for advancing precision medicine, as it facilitates the development of more effective and personalized treatment and prevention strategies. With the development of high-throughput sequencing technologies, researchers now have access to a wealth of multi-omics data from cancer patients, making computational cancer subtyping increasingly feasible. One of the main challenges in integrating multi-omics data is handling missing data, since not all biomolecules are consistently measured across all samples.

View Article and Find Full Text PDF

Electrochemical urea oxidation reaction (UOR) suffers from sluggish reaction kinetics due to its complex 6-electron transfer processes combined with conversion of complicated intermediates, severely retarding the overall energy conversion efficiency. Herein, manganese-doped nickel phosphide nanosheets (Mn-NiP) are constructed and employed for driving UOR. Comprehensive analysis deciphers that Mn doping could efficiently accelerate the surface reconstruction of Mn-NiP electrode, generating highly reactive NiOOH-MnOOH heterostructure with local nucleophilic and electrophilic regions.

View Article and Find Full Text PDF

Urea electrooxidation with favorable thermodynamic potential is highly anticipated but suffering from sluggish kinetics. Deciphering the activity origin and achieving rational structure design are pivotal for developing highly efficient electrocatalyst for urea oxidation reaction (UOR). Herein, nitrogen penetrated nickel nanoparticles confined in carbon nanotubes (Ni-NCNT) is successfully achieved to drive UOR.

View Article and Find Full Text PDF

Cr(VI) is one of the most common environmental pollutants. The non-biodegradable Cr(VI) in aqueous solution accumulates along the food chain and damages the health of plant, animal, and human. In this study, solid-state fermentation technology was used to treat residue to improve its adsorption capacity for Cr(VI).

View Article and Find Full Text PDF