Publications by authors named "Zhangyun Liu"

Dicarboxylic acids and cyclic ketones, such as adipic acid (AA) and cyclohexanone (CHN), are essential compounds for the chemical industry. Although their production by electrosynthesis using electricity is considered one of the most promising strategies, the application of such processes has been hampered by a lack of efficient catalysts as well as a lack of understanding of the mechanism. Herein, a series of monolithic -NiOOH-Ni(OH)/NF were prepared by means of self-dissolution of metal matrix components, interface growth, and electrochemical activation (denoted as ).

View Article and Find Full Text PDF

Hemilability is an important concept in homogeneous catalysis where both the reactant activation and the product formation can occur simultaneously through a reversible opening and closing of the metal-ligand coordination sphere. However, this effect has rarely been discussed in heterogeneous catalysis. Here, by employing a theoretical study on CO oxidation over substituted Cu/CeO single atom catalysts, we show that dynamic evolution of metal-support coordination can significantly change the electronic structure of the active center.

View Article and Find Full Text PDF

Copper-based catalysts play a pivotal role in many industrial processes and hold a great promise for electrocatalytic CO reduction reaction into valuable chemicals and fuels. Towards the rational design of catalysts, the growing demand on theoretical study is seriously at odds with the low accuracy of the most widely used functionals of generalized gradient approximation. Here, we present results using a hybrid scheme that combines the doubly hybrid XYG3 functional and the periodic generalized gradient approximation, whose accuracy is validated against an experimental set on copper surfaces.

View Article and Find Full Text PDF

Non-covalent interactions between ions and π systems play an important role in molecular recognition, catalysis and biology. To guide the screen and design for artificial hosts, catalysts and drug delivery, understanding the physical nature of ion-π complexes via descriptors is indispensable. However, even with multiple descriptors that contain the leading term of electrostatic and polarized interactions, the quantitative description for the binding energies (BEs) of ion-π complexes is still lacking because of the intrinsic shortcomings of the commonly used descriptors.

View Article and Find Full Text PDF

A broadcast encryption scheme with personalized messages (BEPM) is a scheme in which a broadcaster transmits not only encrypted broadcast messages to a subset of recipients but also encrypted personalized messages to each user individually. Several broadcast encryption (BE) schemes allow a broadcaster encrypts a message for a subset S of recipients with public keys and any user in S can decrypt the message with his/her private key. However, these BE schemes can not provide an efficient way to transmit encrypted personalized messages to each user individually.

View Article and Find Full Text PDF