Publications by authors named "Zhanguo Xin"

(L.) Moench is a significant grass crop globally, known for its genetic diversity. High quality genome sequences are needed to capture the diversity.

View Article and Find Full Text PDF

Cuticular wax (CW) is the first defensive barrier of plants that forms a waterproof barrier, protects the plant from desiccation, and defends against insects, pathogens, and UV radiation. Sorghum, an important grass crop with high heat and drought tolerance, exhibits a much higher wax load than other grasses and the model plant Arabidopsis. In this study, we explored the regulation of sorghum CW biosynthesis using a bloomless mutant.

View Article and Find Full Text PDF

Peanut is a critical food crop worldwide, and the development of high-throughput phenotyping techniques is essential for enhancing the crop's genetic gain rate. Given the obvious challenges of directly estimating peanut yields through remote sensing, an approach that utilizes above-ground phenotypes to estimate underground yield is necessary. To that end, this study leveraged unmanned aerial vehicles (UAVs) for high-throughput phenotyping of surface traits in peanut.

View Article and Find Full Text PDF

Introduction: A fundamental developmental switch for plants is transition from vegetative to floral growth, which integrates external and internal signals. INDETERMINATE1 (Id1) family proteins are zinc finger transcription factors that activate flowering in grasses regardless of photoperiod. Mutations in maize and rice () cause very late flowering.

View Article and Find Full Text PDF

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.

View Article and Find Full Text PDF

Mutagenesis is a proven, classical technique for inducing a broad spectrum of DNA variations and has led to the creation of thousands of improved varieties in many crop species [...

View Article and Find Full Text PDF

Sorghum () is the fifth most important cereal crop worldwide; however, its utilization in food products can be limited due to reduced nutritional quality related to amino acid composition and protein digestibility in cooked products. Low essential amino acid levels and digestibility are influenced by the composition of the sorghum seed storage proteins, kafirins. In this study, we report a core collection of 206 sorghum mutant lines with altered seed storage proteins.

View Article and Find Full Text PDF

Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food, feed, and fuel production. Particularly, sorghum is targeted for cellulosic ethanol production.

View Article and Find Full Text PDF

Chinese sorghum (S. bicolor) has been a historically critical ingredient for brewing famous distilled liquors ever since Yuan Dynasty (749 ∼ 652 years BP). Incomplete understanding of the population genetics and domestication history limits its broad applications, especially that the lack of genetics knowledge underlying liquor-brewing properties makes it difficult to establish scientific standards for sorghum breeding.

View Article and Find Full Text PDF

The precursors and derivatives of jasmonic acid (JA) contribute to plant protective immunity to insect attack. However, the role of JA in sorghum () defense against sugarcane aphid (SCA) (), which is considered a major threat to sorghum production, remains elusive. Sorghum SC265, previously identified as a SCA-resistant genotype among the sorghum nested association mapping founder lines, transiently increased JA at early stages of aphid feeding and deterred aphid settling.

View Article and Find Full Text PDF

SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development.

View Article and Find Full Text PDF

In sorghum () and other C grasses, () mutants have long been associated with plants impaired in their ability to synthesize lignin. The () gene, identified using a bulk segregant analysis and next-generation sequencing, was determined to encode a chalcone isomerase (CHI). Two independent mutations within this gene confirmed that loss of its function was responsible for the brown leaf midrib phenotype and reduced lignin concentration.

View Article and Find Full Text PDF

Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C plant that is well adapted for semi-arid and arid regions.

View Article and Find Full Text PDF

Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops.

View Article and Find Full Text PDF

A novel inducible secretion system mutation in Sorghum named Red root has been identified. The mutant plant root exudes pigmented compounds that enriches Actinobacteria in its rhizosphere compared to BTx623. Favorable plant-microbe interactions in the rhizosphere positively influence plant growth and stress tolerance.

View Article and Find Full Text PDF

Unlabelled: () is a conserved plant-specific gene that modulates a range of environmental responses in multiple plant species, including playing a key role in photoperiodic regulation of flowering time. The C4 grass is an important grain and subsistence crop, animal forage, and cellulosic biofuel feedstock that is tolerant of abiotic stresses and marginal soils. To understand sorghum flowering time regulatory networks, we characterized the nonsense mutant allele of the sorghum () gene from a sequenced M4 EMS-mutagenized BTx623 population.

View Article and Find Full Text PDF
Article Synopsis
  • Grasses exhibit different inflorescence shapes, but the genetic factors behind these variations are not well understood, prompting research into the role of the COMPOSITUM 1 (COM1) transcription factor.
  • COM1 has different functions in barley (which promotes branch inhibition) compared to non-Triticeae grasses (which support branch formation), influencing cell growth and wall properties at inflorescence boundaries.
  • This study suggests that COM1 not only regulates meristem identity by interacting with other genes but also is shaped by natural selection, impacting both the evolution of inflorescence structures and potential agricultural breeding strategies.
View Article and Find Full Text PDF

The male-sterile 9 (ms9) is a novel nuclear male-sterile mutant in sorghum. The Ms9 gene encodes a PHD-finger transcription factor critical for pollen development. The identification of the Ms9 gene provides a strategy to control male sterility in sorghum.

View Article and Find Full Text PDF

Linolenic acid produced by the ω-3 fatty acid desaturase MSD3 in sorghum is used for insect-induced jasmonic acid production and is important for resistance against Spodoptera frugiperda. Jasmonic acid (JA) is a phytohormone that regulates both plant development and stress responses. In sorghum (Sorghum bicolor), the ω-3 fatty acid desaturase Multiseeded3 (MSD3) and the 13-lipoxygenase Multiseeded2 (MSD2) are important for producing JA to regulate panicle development and spikelet fertility, but their function in plant defense remains unknown.

View Article and Find Full Text PDF

Summary: With the advance of next-generation sequencing technologies and reductions in the costs of these techniques, bulked segregant analysis (BSA) has become not only a powerful tool for mapping quantitative trait loci but also a useful way to identify causal gene mutations underlying phenotypes of interest. However, due to the presence of background mutations and errors in sequencing, genotyping, and reference assembly, it is often difficult to distinguish true causal mutations from background mutations. In this study, we developed the BSAseq workflow, which includes an automated bioinformatics analysis pipeline with a probabilistic model for estimating the linked region (the region linked to the causal mutation) and an interactive Shiny web application for visualizing the results.

View Article and Find Full Text PDF

Grain size is a major determinant of grain yield in sorghum and other cereals. Over 100 quantitative trait loci (QTLs) of grain size have been identified in sorghum. However, no gene underlying any grain size QTL has been cloned.

View Article and Find Full Text PDF

Gene regulation is central for growth, development, and adaptation to environmental changes in all living organisms. Many genes are induced by environmental cues, and the expression of these inducible genes is often repressed under normal conditions. Here, we show that the SHINY2 (SHI2) gene is important for repressing salt-inducible genes and also plays a role in cold response.

View Article and Find Full Text PDF

Grain number per panicle is an important component of grain yield in sorghum ( (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 ( and genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions.

View Article and Find Full Text PDF

As in other cereal crops, the panicles of sorghum ( (L.) Moench) comprise two types of floral spikelets (grass flowers). Only sessile spikelets (SSs) are capable of producing viable grains, whereas pedicellate spikelets (PSs) cease development after initiation and eventually abort.

View Article and Find Full Text PDF