The endoplasmic reticulum (ER) serves as a hub for various cellular processes, and maintaining ER homeostasis is essential for cell function. Reticulophagy is a selective process that removes impaired ER subdomains through autophagy-mediatedlysosomal degradation. While the involvement of ubiquitination in autophagy regulation is well-established, its role in reticulophagy remains unclear.
View Article and Find Full Text PDFHeterobifunctional proteolysis-targeting chimeras (PROTACs) offer a promising cancer treatment avenue by efficiently degrading unwanted cellular proteins. A recent study from Zhang et al. demonstrated the successful utilization of the N-end rule in PROTAC design, allowing for a modular degradation rate tailored to the oncogenic driver BCR-ABL.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
December 2023
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics.
View Article and Find Full Text PDFEukaryotic stress granules (SGs) are highly dynamic assemblies of untranslated mRNAs and proteins that form through liquid-liquid phase separation (LLPS) under cellular stress. SG formation and elimination process is a conserved cellular strategy to promote cell survival, although the precise regulation of this process is poorly understood. Here, we screened six E3 ubiquitin ligases present in SGs and identified TRIM21 (tripartite motif containing 21) as a central regulator of SG homeostasis that is highly enriched in SGs of cells under arsenite-induced oxidative stress.
View Article and Find Full Text PDFAMFR/gp78 and USP13 are a pair of ubiquitin ligase and deubiquitinase that ensure the accuracy of endoplasmic reticulum-associated degradation (ERAD). Depletion of USP13 leads to caspase activation and cleavage of the ERAD chaperone BAG6, which is reversed by knockdown of . However, the mechanism and physiological relevance of this regulation are still unclear.
View Article and Find Full Text PDF