Publications by authors named "Zhangmin Hu"

Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway plays a notable role in the oncogenesis of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological processes, such as cell growth, differentiation, apoptosis, immune responses, and inflammation.

View Article and Find Full Text PDF

Background: Novel biomarkers are required in gastric cancer (GC) treated by immunotherapy. Epstein-Barr virus (EBV) infection induces an immune-active tumor microenvironment, while its association with immunotherapy response is still controversial. Genes underlying EBV infection may determine the response heterogeneity of EBV + GC.

View Article and Find Full Text PDF

Many biological processes related to cell function and fate begin with chromatin alterations, and many factors associated with the efficacy of immune checkpoint inhibitors (ICIs) are actually downstream events of chromatin alterations, such as genome changes, neoantigen production, and immune checkpoint expression. However, the influence of genes as chromatin regulators on the efficacy of ICIs remains elusive, especially in gastric cancer (GC). In this study, thirty out of 1593 genes regulating chromatin associated with a favorable prognosis were selected for GC.

View Article and Find Full Text PDF

N-methyladenosine (mA) methylation modification is a ubiquitous RNA modification involved in the regulation of various cellular processes, including regulation of RNA stability, metabolism, splicing and translation. Gastrointestinal (GI) cancers are some of the world's most common and fatal cancers. Emerging evidence has shown that mA modification is dynamically regulated by a complex network of enzymes and that the catalytic subunit mA-METTL complex (MAC)-METTL3/14, a core component of mA methyltransferases, participates in the development and progression of GI cancers.

View Article and Find Full Text PDF

The tumormicroenvironment (TME) plays a key role in tumor progression. Tumor-associated macrophages (TAMs), which are natural immune cells abundantin the TME, are mainly divided into the anti-tumor M1 subtype and pro-tumor M2 subtype. Due to the high plasticity of TAMs, the conversion of the M1 to M2 phenotype in hypoxic and hypoglycemic TME promotes cancer progression, which is closely related to lipid metabolism.

View Article and Find Full Text PDF

The long-chain fatty acyl CoA synthetase (ACSLs) family of enzymes contributes significantly to lipid metabolism and produces acyl-coenzyme A by catalyzing fatty acid oxidation. The dysregulation of ACSL3 and ACSL4, which belong to the five isoforms of ACSLs, plays a key role in cancer initiation, development, metastasis, and tumor immunity and may provide several possible therapeutic strategies. Moreover, ACSL3 and ACSL4 are crucial for ferroptosis, a non-apoptotic cell death triggered by the accumulation of membrane lipid peroxides due to iron overload.

View Article and Find Full Text PDF

The immunotherapy efficacy in gastric cancer (GC) is limited. Cancer-associated fibroblasts (CAFs) induce primary resistance to immunotherapy. However, CAF infiltration in tumors is difficult to evaluate due to the lack of validated and standardized quantified methods.

View Article and Find Full Text PDF

Glutamine metabolism (GM) plays a critical role in hepatocellular carcinoma (HCC); however, a comprehensive methodology to quantify GM activity is still lacking. We developed a transcriptome-based GMScore to evaluate GM activity and investigated the association of GMScore with prognosis and therapeutic resistance. Two independent HCC cohorts with transcriptome data were selected from The Cancer Genome Atlas (TCGA, = 365) and the International Cancer Genome Consortium (ICGC, = 231).

View Article and Find Full Text PDF

Nickel-rich oxide/graphite cells under high voltage operation provide high energy density but present short cycle life because of the parasitic electrolyte decomposition reactions. In this work, we report a novel electrolyte additive, N,O-bis(trimehylsilyl)-trifluoroacetamide (NOB), which enables nickel-rich oxide/graphite cells to operate stably under high voltage. When evaluated in a nickel-rich oxide-based full cell, LiNiCoMnO (NCM523)/graphite using a carbonate electrolyte, 1 wt % NOB provides the cell with capacity retention improved from 38% to 73% after 100 cycles at 1C under 4.

View Article and Find Full Text PDF

Toroviruses (ToVs), closely related but genetically distinct from coronaviruses, are known to infect horses, cows, pigs, goats and humans, mainly causing enteritic disorders. However, due to the lack of an adaptive culture system, porcine ToV (PToV) has received less attention. In this study, we developed a novel serological detection method based on the PToV envelope spike subunit 1 (S1) protein for the first time, and compared it to an existing indirect enzyme-linked immunosorbent assay (ELISA) based on the nucleocapsid protein.

View Article and Find Full Text PDF

High-voltage cathodes provide a promising solution to the energy density limitation of currently commercialized lithium-ion batteries, but they are unstable in electrolytes during the charge/discharge process. To address this issue, we propose a novel electrolyte additive, pentafluorophenyltriethoxysilane (TPS), which is rich in elemental F and contains elemental Si. The effectiveness of TPS has been demonstrated by cycling a representative high-voltage cathode, LiNiMnO (LNMO), in 1.

View Article and Find Full Text PDF

Cobalt-modified molybdenum dioxide nanoparticles highly dispersed on nitrogen-doped carbon nanorods (Co-MoO/NCND), are synthesized from anilinium trimolybdate dihydrate nanorods, for the performance improvement of microbial fuel cell based on a mixed bacterial culture. Electrochemical measurements demonstrate that the as-synthesized Co-MoO/NCND exhibits excellent electrocatalytic activity for the charge transfer on anode, providing the cell with a maximum power density of 2.06 ± 0.

View Article and Find Full Text PDF

Porcine torovirus (PToV) is a potential enteric swine pathogen, found at especially high rates in piglets with diarrhea. It was first reported in the Netherlands in 1998 and has emerged in many countries around the world. Infections are generally asymptomatic and have not directly caused large economic losses, though co-infections with other swine pathogens and intertype recombination may lead to unpredictable outcomes.

View Article and Find Full Text PDF