Publications by authors named "Zhangliang Gui"

A cationic hydrolytical-polycarboxybetaine (HPCB), poly(N-ethyl acetate-4-vinylpyridinium bromide) was synthesized by incorporating ester group into the side chain of polycarboxybetaine (PCB). The hydrolytic behaviors of HPCB samples in pH 7.4 phosphate buffer saline (PBS) were investigated by FT-IR and (1)H NMR.

View Article and Find Full Text PDF

The influences of pH and NaCl concentration of dipping solutions and the pH and NaCl concentration of disintegration solutions on the disintegration behaviors of poly(4-vinylpyridiniomethanecarboxylate) (PVPMC)/poly(sodium 4-styrenesulfonate) (PSS) (PVPMC/PSS) multilayer films were investigated by ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), quartz crystal microbalance (QCM) and atomic force microscopy (AFM). It was found that the disintegration rates and degrees of PVPMC/PSS multilayer films in neutral water could be well controlled by changing pH of dipping solutions and immersion time during the disintegration process. Furthermore, PVPMC/PSS multilayer films could be disintegrated completely and rapidly in pH 8 alkali solution or physiological condition (i.

View Article and Find Full Text PDF

A new pH-dependent sacrificial system based on zwitterionic polysulfobetaine was proposed for the fabrication of free-standing polyelectrolyte multilayer films. The zwitterionic polysulfobetaine, poly(4-vinylpyridine propylsulfobetaine) (P4VPPS), was synthesized and its layer-by-layer (LbL) self-assembly behavior with poly(diallyldimethylammonium) (PDDA) as counterpart was investigated by using UV-vis absorption spectroscopy, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). The LbL multilayer films of PDDA/P4VPPS were successfully constructed in acid aqueous solution at pH 2 with 0.

View Article and Find Full Text PDF

Solution-processable polyelectrolyte complexes (PECs) between poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) were synthesized in aqueous NaOH and obtained in their solid forms by protection and deprotection of carboxylic acid groups. Elemental analysis, conductance measurement, and FT-IR showed that the composition and ionic complexation degree (ICD) of the PECs can be controlled effectively by tuning the NaOH concentration in both parent polyelectrolyte solutions. Thermal gravity analysis showed that PECs revealed good thermal stability, and differential scanning calorimetry showed that the glass transition temperature (Tg) of PECs increased with increasing ICD and finally became undetectable when ICD was above 0.

View Article and Find Full Text PDF