Publications by authors named "Zhangdi Li"

Serious water contamination induced by massive discharge of cadmium(II) ions is becoming an emergent environmental issue due to high toxicity and bioaccumulation; thus, it is extremely urgent to develop functional materials for effectively treating with Cd from wastewater. Benefiting from abundant binding sites, simple preparation process, and adjustable structure, UiO-66-type metal-organic frameworks (MOFs) had emerged as promising candidates in heavy metal adsorption. Herein, monolithic UiO-66-(COOH)-functionalized cellulose fiber (UCLF) adsorbents were simply fabricated by incorporating MOFs into cellulose membranes through physical blending and self-entanglement.

View Article and Find Full Text PDF

The effective simultaneous treatment of hazardous waste sludge and complex oil/water emulsions in one way is urgently desired but still a challenging issue. Herein, this work for the first time presents a green and efficient strategy to fabricate an electroplating sludge (ES) derived multifunctional self-supporting membrane for the one-step removal of emulsified oils, soluble metal ions, and anions in complex oily wastewater. Due to low cost of ES and sustainability of the solvent selected in fabrication process, the large-scale application of the membrane is easily to promote.

View Article and Find Full Text PDF

Developing rational sorbent for viscous crude oil clean-up is still a daunting challenge, which requires rapid oil-uptake capability and scalable fabrication process. Herein, a heatable hydrophobic sponge sorbent (H-MXene/PVA/MS) with excellent light/Joule-heating performances was fabricated by a simple and feasible top-down approach. MXene nanosheets firmly coated on the substrate skeleton gave the sorbent outstanding ability to convert solar/electricity into heat rapidly due to the localized surface plasmon resonance (LSPR) effect and ultrahigh metallic conductivity.

View Article and Find Full Text PDF

Developing self-heating sorbents for rapid clean-up of viscous oil spills by using clean solar energy is attracting attention. Still, simple and scalable fabrication approaches of solar-heating sorbents remain challenging. Herein, a facile and practical modification strategy was presented to develop a solar-heating modified melamine sponge (rGO/CNT/MS) by dip-coating layer-by-layer (LBL) electrostatic assembly of GO and CNT with opposite charges onto MS skeleton followed by thermal reduction, without any complicated microfabrication and hydrophobic modification processes.

View Article and Find Full Text PDF

Safe, efficient, and simultaneous treatment of toxic industrial sludge and anionic contaminant crisis in one route still remains a persistent global challenge. Herein, we proposed a facile waste-control-waste conceptual design strategy to develop low-cost and high-performance sludge-based adsorbent for not only recycling of toxic waste nickel-containing sludge (NCS) but for the efficient removal of anionic contaminants in wastewater. The as-designed Ni-Al layered double oxides/calcined NCS (Ni-Al LDOs/CNCS) (216.

View Article and Find Full Text PDF

Global effective treatment of phosphorus crisis and toxic waste sludge in one way is urgently needed but still insufficient due to single function, environmental damage, and complicated fabrication process. Herein, we proposed a facile, low-cost, and sustainable strategy to fabricate NiAl layered double oxides/nickel-containing sludge (LDOs/NCS) adsorbent using toxic NCS as raw material via two-step method including hydrothermal process and calcination. The as-designed hierarchical porous adsorbent with large specific surface area and pore volume exhibited excellent adsorption properties towards phosphate.

View Article and Find Full Text PDF

The effective treatment of complex oily wastewater is of great significance but still a considerable challenge, since single-function, expensive reagents, and complicated process have emerged as shackles for practical applications. Herein, with the objective to waste-control-waste, we proposed a facile and sustainable strategy to fabricate a low-cost multifunctional layer from hazardous waste aluminum sludge (WAS) for complex oily wastewater management. The as-designed layered double oxides/WAS (LDOs/WAS) layer with three-dimensional (3D) hierarchical rough surface exhibited excellent underwater superoleophobicity even under corrosive conditions and low adhesion to oil without any chemical modification reagent treatment.

View Article and Find Full Text PDF

Effective cleanup of viscous crude oil spills remains a persistent and crippling challenge. Herein, this work presents a Joule-heated superhydrophobic flower-like Cu(POOH)(PO)·7HO-coated copper foam (SHB-CF@CP) for rapid cleanup of viscous crude oil spills via a facile strategy. The SHB-CF@CP shows outstanding water repellency and excellent stability of hydrophobicity in harsh environments.

View Article and Find Full Text PDF

Fabrication of simple and efficient adsorbents is greatly vital to satisfy the requirements of removal of tellurium in wastewater treatment, yet remains challenging. Here, a facile and cost-effective strategy to develop ZIF-L coated self-crosslinking cellulose membrane (ZIF-L/SC membrane) for tellurium adsorption was presented. In-situ vertical growth of ZIF-L nanoplates with functional properties on membrane substrate is an available strategy, effectively remedying deficiency of pure nanosized sorbent in agglomeration problem and unhandy recovery.

View Article and Find Full Text PDF

Tellurium is massively used as the main light-absorbing layer component in the manufacturing of CdTe thin-film solar cells, a critical component in the photovoltaic industry. However, the process of manufacturing and renewing components has produced large amounts of tellurium-containing wastewater that is difficult to degrade and poses a serious threat to the aquatic ecosystem and human health. Hence, to achieve the recovery of tellurium resources for reducing their damages, a win-win approach was employed to utilize waste lignin to construct functional copper-doped activated lignin (CAL) adsorbents for selective separation and recovery of tellurium from wastewater.

View Article and Find Full Text PDF

Due to the variety of oily wastewater and complexity of separation system, it has put forward new challenge and requirement to separation materials for on-demand separation of various oil/water mixtures. Here, we reported a facile waste-to-resource strategy to rationally fabricate hierarchical ZnO nanopillars coating onto the surface of waste brick grains (ZnO/WBG) via simple physical process and in-situ growth technique. Specifically, the directly as-prepared ZnO/WBG possess superhydrophilic/underwater superoleophobic (UWSOB) properties and modified ZnO/WBG by organosilicon reagent possess quasi superhydrophobic/superoleophilic (SHOBI) properties.

View Article and Find Full Text PDF

Waste brick (WB), as a major type of construction and demolition waste, has posed much potential disasters to the environment and society due to the main disposal method of direct landfill. In this work, we presented a sustainable and promising recycling approach to transform WB into TiO nanoneedles functionalized waste brick grain material (TiO/WBG) via a simple physical treatment and in-situ growth technique. The raw WBG can be as promising substrate material due to excellent chemical stability.

View Article and Find Full Text PDF

To maintain personal thermal comfort in cold weather, indoor heating consumes large amount of energy and is a primary source of greenhouse gas emission. Traditional clothes are too thick for thermal comfort in cold outdoor environment, resulting the lower wearing comfort. In this work, a multifunctional Ag nanoparticles/cellulose fibers thermal insulation membrane starting from waste paper cellulose fibers was prepared via simple silver mirror reaction and subsequent vacuum filtration process to improve the infrared reflection properties of membranes for human thermal insulation.

View Article and Find Full Text PDF