Publications by authors named "Zhangbao Chen"

In this study, we investigated the physicochemical properties and composition of monosaccharidex from Polygonatum sibiricum. Simultaneously, we explored the in vivo and in vitro immunomodulatory activity and mechanism of Polygonatum sibiricum polysaccharide (PSP) activity by monitoring changes in immune organs, immune cells, and cytokines. The average molecular weight (M) of PSP was 9.

View Article and Find Full Text PDF

Our goal was to improve treatment outcomes for infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex.

View Article and Find Full Text PDF

To study the effect of polysaccharides from Polygonatum sibiricum on mRNA and protein expressions of blood lipid metabolism in hyperlipidemic mice. The mice were randomly divided into 6 groups, namely the blank control group, the hyperlipidemia model group, the simvastatin group, and low, middle and high-dose PSP groups (200, 400, 800 mg·kg⁻¹·d⁻¹). Each group of the mice was administrated intragastrically for 14 days, respectively.

View Article and Find Full Text PDF

Inspired by the fact that chitosan is a representative constituent of the ectocellular structure of Cryptococcus neoformans and a typical biomaterial for improving drug oral absorption, we designed an elegant and efficient C. neoformans-targeted drug delivery system via oral administration. A chitosan-binding peptide screened by phage display was used as the targeting moiety, followed by conjugation to the surface of poly(lactic- co-glycolic acid) nanoparticles as the drug carrier, which was then incubated with free chitosan.

View Article and Find Full Text PDF

Hereby, one kind of facile carbon dots (CDs) from hydroxypropylmethyl cellulose (HPMC) has been successfully provided, which obviously emitted blue fluorescence. With the related characterizations in detail, the CDs prepared here mainly consisted of C and O, owing to the functional groups of -OH and C=O on their surfaces. Likewise, the CDs also showed multiple advantages, including excellent photostability, superior dispersity and desirable stability.

View Article and Find Full Text PDF

The purpose of this study is to develop a liposomal drug delivery system actively targeting Cryptococcus neoformans and explore its feasibility in therapy of cryptococcal infection. The specific fungi-binding peptide was screened from 12-mer random phage display library, and linked to PEG-DSPE as the functional material of liposomes. The targeting capability of peptide-modified liposomes were investigated by fungi binding assay in vitro and fluorescence imaging in vivo.

View Article and Find Full Text PDF

In this study, we explored the feasibility of biotin-mediated modified polymeric micelles for pancreatic cancer targeted photodynamic therapy. Poly (ethylene glycol)-distearoyl phosphatidyl ethanolamine (mPEG2000-DSPE) served as the drug-loaded material, biotin-poly(ethylene glycol)-distearoyl phosphatidyl ethanolamine (Biotin-PEG3400-DSPE) as the functional material and the polymeric micelles were prepared by a thin-film hydration method. The targeting capability of micelles was investigated by cell uptake assay in vitro and fluorescence imaging in vivo and the amounts of Biotin-PEG-DSPE were optimized accordingly.

View Article and Find Full Text PDF

Inspired by the knowledge that most antibodies recognize a conformational epitope because of the epitope's specific three-dimensional shape rather than its linear structure, we combined scaffold-based peptide design and surface molecular imprinting to fabricate a novel nanocarrier harboring stable binding sites that captures a membrane protein. In this study, a disulfide-linked α-helix-containing peptide, apamin, was used to mimic the extracellular, structured N-terminal part of the protein p32 and then serve as an imprinting template for generating a sub-40 nm-sized polymeric nanoparticle that potently binds to the target protein, recognizes p32-positive tumor cells, and successfully mediates targeted photodynamic therapy in vivo. This could provide a promising alternative for currently used peptide-modified nanocarriers and may have a broad impact on the development of polymeric nanoparticle-based therapies for a wide range of human diseases.

View Article and Find Full Text PDF

In oncology, there is a growing need for simpler, more selective methods to deliver drug therapies directly to the tumor site. For combination therapies, simultaneous targeted delivery of multiple drugs would represent a significant improvement. In contrast to previous work that took a de novo approach, we constructed a novel two-in-one liposomal system (TWOLips) from two single drug-loaded liposomes.

View Article and Find Full Text PDF

In the face of escalating problems with pathogen control, the development of proper formulations of existing antibiotics is as important as the development of novel antibiotics. Daptomycin is a lipopeptide antibiotic with potent activity against Gram-positive bacteria. Currently, only injectable solution of daptomycin has been approved for clinical use.

View Article and Find Full Text PDF

Faced with the complex medical challenge presented by spinal cord injuries (SCI) and considering the lack of any available curative therapy, the development of a novel method of delivering existing drugs or candidate agents can be perceived to be as important as the development of new therapeutic molecules. By combining three ingredients currently in clinical use or undergoing testing, we have designed a central nervous system targeted delivery system based on apamin-modified polymeric micelles (APM). Apamin, one of the major components of honey bee venom, serves as the targeting moiety, poly(ethylene glycol) (PEG) distearoylphosphatidylethanolamine (DSPE) serves as the drug-loaded material, and curcumin is used as the therapeutic agent.

View Article and Find Full Text PDF

The purpose of this study was to investigate flexible nanoliposomes for mediating topical delivery of daptomycin, and to document permeation rates and bacteriostatic activity towards skin infections. Response surface methodology was used to optimize the daptomycin-loaded flexible nanoliposomes (DAP-FL), and the amount of drug loaded into the particles was evaluated as the investigation index. The optimal lipid ratio was lecithin to sodium cholate 17:1 (w/w) and the lipid to drug ratio was 14:1 (w/w).

View Article and Find Full Text PDF

There is no data up to now to show that peptide can deliver plasmid into brain as a single-component transfer vector. Here we show that a novel peptide, RDP (consisted of 39 amino acids), can be exploited as an efficient plasmid vector for brain-targeting delivery. The plasmids containing Lac Z reporter gene (pVAX-Lac Z) and BDNF gene (pVAX-BDNF) are complexed with RDP and intravenously injected into mice.

View Article and Find Full Text PDF

Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endothelial cells of tumor lymphatics in certain tumors), was structurally modified by replacement of the original intramolecular disulfide bond with a diseleno bond.

View Article and Find Full Text PDF

The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro.

View Article and Find Full Text PDF

This study investigated effects of wet and dry seasons on the bacterial community structure of the Three Gorges Reservoir by using denaturing gradient gel electrophoresis analysis of the PCR-amplified bacterial 16S rRNA gene. Bacterial diversity, as determined by the Shannon index, the Simpson's index, and the Richness, dramatically changed in between the dry and wet seasons. The changes in the diversity and relative abundance of microbial populations among the five sites during the wet season have become more marked than those observed during the dry season.

View Article and Find Full Text PDF

We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process.

View Article and Find Full Text PDF

The structure determination of the title compound, C(16)H(16)ClNO(2), was performed as part of a project on the inter-actions between small organic mol-ecules and proteins. In the crystal structure, the dihedral angle between the two aromatic rings is 16.14 (12)°.

View Article and Find Full Text PDF