Publications by authors named "Zhang-Qi Feng"

Background: In light of inconsistent evidence from previous observational studies regarding the correlation between serum vitamin D levels and urolithiasis, this study aimed to investigate the genome-wide causal association between genetically predicted serum 25(OH)D levels and urolithiasis using the Mendelian randomization (MR) approach.

Methods: In this study, we utilized genome-wide association studies (GWAS) summary statistics from the UK Biobank and SUNLIGHT consortium for serum vitamin D levels, as well as urolithiasis data from FinnGen. We employed bidirectional two-sample MR analysis to evaluate potential causal relationships.

View Article and Find Full Text PDF

In recent years, there has been considerable attention devoted to flexible electronic devices within the realm of biomedical engineering. These devices demonstrate the capability to accurately capture human physiological signals, thereby facilitating efficient human-computer interaction, and providing a novel approach of flexible electronics for monitoring and treating related diseases. A notable contribution to this domain is the emergence of conductive hydrogels as a novel flexible electronic material.

View Article and Find Full Text PDF

Rationale: Extracorporeal membrane oxygenation (ECMO) is a critical care intervention that acts as a temporary substitute for the heart and lungs, facilitating adequate tissue perfusion and gas exchange. The 2 primary configurations, veno-arterial and veno-venous ECMO, are tailored to support either the heart and lungs or the lungs alone, respectively.

Patient Concerns: The case report details patients with tumor-induced airway stenosis who encountered limitations with standard treatments, which were either insufficient or carried the risk of severe complications such as hypoxia and asphyxia.

View Article and Find Full Text PDF

Bionic electrical stimulation (Bio-ES) aims to achieve personalized therapy and proprioceptive adaptation by mimicking natural neural signatures of the body, while current Bio-ES devices are reliant on complex sensing and computational simulation systems, thus often limited by the low-fidelity of simulated electrical signals, and failure of interface information interaction due to the mechanical mismatch between soft tissues and rigid electrodes. Here, the study presents a flexible and ultrathin self-sustainable bioelectronic patch (Bio-patch), which can self-adhere to the lesion area of organs and generate bionic electrical signals synchronized vagal nerve envelope in situ to implement Bio-ES. It allows adaptive adjustment of intensity, frequency, and waveform of the Bio-ES to fully meet personalized needs of tissue regeneration based on real-time feedback from the vagal neural controlled organs.

View Article and Find Full Text PDF
Article Synopsis
  • Poly-L-lactic acid (PLLA) is a piezoelectric material with excellent properties like biocompatibility and biodegradability, making it suitable for various applications.
  • This review covers PLLA's unique piezoelectric effects and recent advancements in its preparation for use as a piezoelectric material.
  • It also explores recent research on PLLA in health monitoring, skin and nerve repair, and suggests future directions for its development.
View Article and Find Full Text PDF

Introduction: The presence of cerebral-cardiac syndrome, wherein brain diseases coincide with heart dysfunction, significantly impacts patient prognosis. In severe instances, circulatory failure may ensue, posing a life-threatening scenario necessitating immediate life support measures, particularly effective circulatory support methods. The application of extracorporeal membrane oxygenation (ECMO) is extensively employed as a valuable modality for delivering circulatory and respiratory support in the care of individuals experiencing life-threatening circulatory and respiratory failure.

View Article and Find Full Text PDF

Background: Pulmonary embolism is a condition of right cardiac dysfunction due to pulmonary circulation obstruction. Malignant tumor-induced pulmonary embolism, which has a poor therapeutic outcome and a significant impact on hemodynamics, is the cause of sudden death in patients with malignant tumors.

Case Description: A 38-year-old female patient, who had a medical history of right renal hamartoma, and right renal space-occupying lesion, was admitted to the hospital.

View Article and Find Full Text PDF

Biomolecular piezoelectric materials show great potential in the field of wearable and implantable biomedical devices. Here, a self-assemble approach is developed to fabricating flexible β-glycine piezoelectric nanofibers with interfacial polarization locked aligned crystal domains induced by NbCT nanosheets. Acted as an effective nucleating agent, NbCT nanosheets can induce glycine to crystallize from edges toward flat surfaces on its 2D crystal plane and form a distinctive eutectic structure within the nanoconfined space.

View Article and Find Full Text PDF

Background: The Corona Virus Disease 2019 (COVID-19) pandemic has raised concerns regarding its potential impact on male reproductive health. However, the impact of COVID-19 on sperm quality remains uncertain. This retrospective study aimed to investigate the short-term and relatively long-term effects of COVID-19 infection on sperm quality.

View Article and Find Full Text PDF

Bioelectronic medicine is a rapidly growing field where targeted electrical signals can act as an adjunct or alternative to drugs to treat neurological disorders and diseases via stimulating the peripheral nervous system on demand. However, current existing strategies are limited by external battery requirements, and the injury and inflammation caused by the mechanical mismatch between rigid electrodes and soft nerves. Here we report a wireless, leadless, and battery-free ferroelectret implant, termed NeuroRing, that wraps around the target peripheral nerve and demonstrates high mechanical conformability to dynamic motion nerve tissue.

View Article and Find Full Text PDF

Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti C T MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction.

View Article and Find Full Text PDF

Background: Varicocele is a high incidence and is considered to be the most common and correctable cause of male infertility. Oxidative stress (OS) plays a central role in the pathogenesis of varicocele-related male infertility. In addition to varicocelectomy, antioxidant supplementation seems to be an effective scheme for the treatment of varicocele-related male infertility, but it is still controversial.

View Article and Find Full Text PDF

Bioelectricity plays a significant role in major biological processes and electrical stimulation is an effective and non-invasive way to promote cellular growth, differentiation and tissue regeneration. In tissue engineering, piezoelectric materials not only act as modulators to regulate behaviors and functions of cells and tissues, but are also used as scaffolds to regulate and guide cell growth and matrix synthesis, thus promoting the formation of new tissue. Piezoelectronic electrons are produced from piezoelectric materials upon mechanical stimuli and have similar effects on cells as an external electrical field.

View Article and Find Full Text PDF

Invasive electrical stimulation (iES) is prone to cause neural stimulus-inertia owing to its excessive accumulation of exogenous charges, thereby resulting in many side effects and even failure of nerve regeneration and functional recovery. Here, a wearable neural iES system is well designed and built for bionic and long-lasting neural modulation. It can automatically yield biomimetic pulsed electrical signals under the driven of respiratory motion.

View Article and Find Full Text PDF

The long-segment peripheral nerve injury (PNI) represents a global medical challenge, leading to incomplete nerve tissue recovery and unsatisfactory functional reconstruction. However, the current electrical stimulation (ES) apparatuses fail perfect nerve repair due to their inability of the variable synchronous self-regulated function with physiological states. It is urgent to develop an implantable ES platform with physiologically adaptive function to provide instantaneous and nerve-preferred ES.

View Article and Find Full Text PDF

The biophysical characteristics of the extracellular matrix (ECM), such as a three-dimensional (3D) network and bioelectricity, have a profound influence on cell development, migration, function expression, etc. Here, inspired by these biophysical cues of ECM, we develop an electromechanical coupling bio-nanogenerator (bio-NG) composed of highly discrete piezoelectric fibers. It can generate surface piezopotential up to millivolts by cell inherent force and thus provide in situ electrical stimulation for the living cells.

View Article and Find Full Text PDF

Despite the boom in the water-triggered electric power generation technologies, few attempts have been made with a broader horizonyielding the electricity from sweat, which is of great value for low-power-consumption wearable electronics. Here, an electromechanical coupling and humidity-actuated two-in-one humidity actuator-driven piezoelectric generator (HAPG) are reported, that can yield continuous electric power from fluctuations in the ambient humidity. It is composed of polyvinyl alcohol (PVA)-wrapped highly aligned dopamine (DA)/polyvinylidene fluoride (PVDF) shell/core nanofibers (PVA@DA/PVDF NFs).

View Article and Find Full Text PDF

Dual network (DN) hydrogels with excellent mechanical strength and controllable component adjustment characteristics have a broad application range in the field of biomedicine. However, the tissue adhesion, skin affinity, self-healing, and antibacterial properties of DN hydrogels are inadequate for their application as skin patches. In this work, we prepared dopamine/zinc oxide (DOPA/ZnO) doped poly(N-hydroxyethyl acrylamide) (p(HEAA))/agar DN hydrogels and combined them to obtain a bilayer hydrogel (two-layer gel) with moisturizing properties.

View Article and Find Full Text PDF

Fabrication of soft piezoelectric nanomaterials is essential for the development of wearable and implantable biomedical devices. However, a big challenge in this soft functional material development is to achieve a high piezoelectric property with long-term stability in a biological environment. Here, a one-step strategy for fabricating core/shell poly(vinylidene difluoride) (PVDF)/dopamine (DA) nanofibers (NFs) with a very high β-phase content and self-aligned polarization is reported.

View Article and Find Full Text PDF

Background: Ureaplasma urealyticum (UU) infection, as well as asymptomatic leukocytospermia, whether it has effect on semen parameters and whether it needs screening and treatment is still a confusing and controversial topic for clinicians.

Methods: Among 1530 adult males who visited Guilin People's Hospital due to infertility, 295 were diagnosed with asymptomatic leukocytospermia, and 95 were further screened for UU-positive. 81 UU-positive asymptomatic leukocytospermia patients received 7-day or 14-day treatment plan with doxycycline, and 70 cases were cured.

View Article and Find Full Text PDF

Zwitterionic materials are an important class of antifouling biomaterials for various applications. Despite such desirable antifouling properties, molecular-level understanding of the structure-property relationship associated with surface chemistry/topology/hydration and antifouling performance still remains to be elucidated. In this work, we computationally studied the packing structure, surface hydration, and antifouling property of three zwitterionic polymer brushes of poly(carboxybetaine methacrylate) (pCBMA), poly(sulfobetaine methacrylate) (pSBMA), and poly((2-(methacryloyloxy)ethyl)phosporylcoline) (pMPC) brushes and a hydrophilic PEG brush using a combination of molecular mechanics (MM), Monte Carlo (MC), molecular dynamics (MD), and steered MD (SMD) simulations.

View Article and Find Full Text PDF

Electroactive nanofibrous scaffold is a vital tool for the study of the various biological research fields from bioelectronics to regenerative medicine, which can provide cell preferable 3D nanofiber architecture and programmed electrical signal. However, intrinsic non-biodegradability is a major problem that hinders its widespread application in the clinic. Herein, we designed, synthesized, and characterized shell/core poly (3,4-ethylenedioxythiophene) (PEDOT)/chitosan (CS) nanofibers by combining the electrospinning and recrystallization processes.

View Article and Find Full Text PDF

Paclitaxel is broad-spectrum anticancer drug which has been widely used in clinic. However, traditional drug delivery often suffers from the scarcity of resources and systemic toxic side effects caused by the localization to non-tumor areas, rendering cancer treatment extremely challenging. To address this problem, we developed a novel multifunctional drug delivery system of a poly(lactic-co-glycolic acid) (PLGA) drug-loaded magnetic Janus particles (DMJPs) using electrohydrodynamic (EDH) co-jetting.

View Article and Find Full Text PDF

Implantable pressure biosensors show great potential for assessment and diagnostics of pressure-related diseases. Here, we present a structural design strategy to fabricate core/shell polyvinylidene difluoride (PVDF)/hydroxylamine hydrochloride (HHE) organic piezoelectric nanofibers (OPNs) with well-controlled and self-orientated nanocrystals in the spatial uniaxial orientation (SUO) of β-phase-rich fibers, which significantly enhance piezoelectric performance, fatigue resistance, stability, and biocompatibility. Then PVDF/HHE OPNs soft sensors are developed and used to monitor subtle pressure changes .

View Article and Find Full Text PDF

Due to inhomogeneous molecular structure and inherent flexibility of organic piezoelectric materials, the improvement in piezoelectric performances is extremely challenging. Herein, a novel sheath-gas-assisted electrospinning method was designed to induce rapid recrystallization and a stretching effect on the PVDF molecular chains, which led to significant promotion in the formation of β and γ crystal phases in PVDF nanofibers and the highest piezoelectric properties reported to date for pure organic piezoelectric materials. By using the PVDF nanofibers for energy harvesting in vivo and in vitro, the motion sensor and implantable nanogenerators displayed excellent sensitivity under an extremely low working frequency of ∼0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6r2ik1hdrvrvtqg3ae0n3nk5k9mqtbg8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once