Flexible supercapacitors can potentially power next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexible conditions is limited by the weak bonding between adjacent layers, posing a significant hindrance to their practical applicability. Herein, based on the uninterrupted 3D network during the growth of bacterial cellulose (BC), a flexible all-in-one supercapacitor is cultivated through a continuous biosynthesis process.
View Article and Find Full Text PDFThe exploration of extreme environments has become necessary for understanding and changing nature. However, the development of functional materials suitable for extreme conditions is still insufficient. Herein, a kind of nacre-inspired bacterial cellulose (BC)/synthetic mica (S-Mica) nanopaper with excellent mechanical and electrical insulating properties that has excellent tolerance to extreme conditions is reported.
View Article and Find Full Text PDFThe oriented pore structure of wood endows it with a variety of outstanding properties, among which the low thermal conductivity has attracted researchers to develop wood-like aerogels as excellent thermal insulation materials. However, the increasing demands of environmental protection have put forward new and strict requirements for the sustainability of aerogels. Here, we report an all-natural wood-inspired aerogel consisting of all-natural ingredients and develop a method to activate the surface-inert wood particles to construct the aerogel.
View Article and Find Full Text PDFConstruction of sustainable high-performance structural materials is a core part of the key global sustainability goal. Many efforts have been made in this field; however, challenges remain in terms of lowering costs by using all-green basic building blocks and improving mechanical properties to meet the demand of practical applications. Here, we report a robust and efficient bottom-up strategy with micro/nanoscale structure design to regenerate an isotropic wood from natural wood particles as a high-performance sustainable structural material.
View Article and Find Full Text PDFUbiquitous petrochemical-based plastics pose a potential threat to ecosystems. In response, bioderived and degradable polymeric materials are being developed, but their mechanical and thermal properties cannot compete with those of existing petrochemical-based plastics, especially those used as structural materials. Herein, we report a biodegradable plant cellulose nanofiber (CNF)-derived polymeric structural material with high-density reversible interaction networks between nanofibers, exhibiting mechanical and thermal properties better than those of existing petrochemical-based plastics.
View Article and Find Full Text PDFHydrogel materials have many excellent properties and a wide range of applications. Recently, a new type of hydrogel has emerged: cellulose nanofiber (CNF)-based hydrogels, which have three-dimensional nanofiber networks and unique physical properties. Because CNFs are abundant, renewable, and biodegradable, they are green and eco-friendly nanoscale building blocks.
View Article and Find Full Text PDFElectromagnetic interference (EMI) shielding materials with excellent EMI shielding efficiency (SE), lightweight property, and superb mechanical performance are vitally important for modern society, but it is still a challenge to realize these performances simultaneously on one material. Here, we report a sustainable bioinspired double-network structural material with excellent specific strength (146 MPa g cm) and remarkable EMI SE (100 dB) from cellulose nanofiber (CNF) and carbon nanotubes (CNTs), which demonstrates remarkable and outstanding performance to both typical metal materials and reported polymer composites. In particular, the bioinspired double-network structure design simultaneously achieves an extremely high electrical conductivity and mechanical strength, which makes it a lightweight, high shielding efficiency, and sustainable structural material for real-life electromagnetic wave shielding applications.
View Article and Find Full Text PDFHydrogel materials with high water content and good biocompatibility are drawing more and more attention now, especially for biomedical use. However, it still remains a challenge to construct hydrogel fibers with enough strength and toughness for practical applications. Herein, we report a bio-inspired lotus-fiber-mimetic spiral structure hydrogel bacterial cellulose fiber with high strength, high toughness, high stretchability, and energy dissipation, named biomimetic hydrogel fiber (BHF).
View Article and Find Full Text PDFUndoubtedly humidity is a non-negligible and sensitive problem for cellulose, which is usually regarded as one disadvantage to cellulose-based materials because of the uncontrolled deformation and mechanical decline. But the lack of an in-depth understanding of the interfacial behavior of nanocellulose in particular makes it challenging to maintain anticipated performance for cellulose-based materials under varied relative humidity (RH). Starting from multiscale mechanics, we herein carry out first-principles calculations and large-scale molecular dynamics simulations to demonstrate the humidity-mediated interface in hierarchical cellulose nanocrystals (CNCs) and associated deformation modes.
View Article and Find Full Text PDFPetroleum-based plastics are useful but they pose a great threat to the environment and human health. It is highly desirable yet challenging to develop sustainable structural materials with excellent mechanical and thermal properties for plastic replacement. Here, inspired by nacre's multiscale architecture, we report a simple and efficient so called "directional deforming assembly" method to manufacture high-performance structural materials with a unique combination of high strength (281 MPa), high toughness (11.
View Article and Find Full Text PDFWater purification by solar distillation is considered a promising technology for producing clean water from undrinkable water resources. A solar steam generator is a central part of a solar distillation process to separate water and contaminants. Here, we report an efficient and sustainable hierarchical solar steam generator (HSSG) with reduced vaporization enthalpy based on bacterial cellulose (BC) nanocomposites.
View Article and Find Full Text PDFSustainable structural materials with light weight, great thermal dimensional stability, and superb mechanical properties are vitally important for engineering application, but the intrinsic conflict among some material properties (e.g., strength and toughness) makes it challenging to realize these performance indexes at the same time under wide service conditions.
View Article and Find Full Text PDF